Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 068502    DOI: 10.1088/1674-1056/add67c
SPECIAL TOPIC — Advanced magnonics Prev   Next  

Control of the magnonic excitation under the joint mechanism of magnetostrictive effect and magnetocrystalline anisotropy

Saisai Yu(鱼赛赛), Junbo Liu(刘竣菠), and Hao Xiong(熊豪)†
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Magnetostrictive effects and magnetocrystalline anisotropy are fundamental physical properties governing magnon dynamics in magnetic systems. Recent evidence shows that strain-mediated magnetostrictive coupling provides an effective pathway for modulating magnonic excitation through quantum interference. Nevertheless, the microscopic origins of magnetocrystalline anisotropy in manipulating magnon excitation pathways, particularly regarding magnonic Kerr nonlinearity and crystal direction constraints, require further investigation. In this study, we construct a dual-frequency driven magnomechanical model based on yttrium iron garnet (YIG) spheres. By introducing a Hamiltonian with the magnonic Kerr nonlinear term, we combine the Heisenberg-Langevin equations and the mean field approximation to analytically solve for the driving efficiency η, and we base our analysis on experimental parameters to evaluate the impacts of the magnonic Kerr coefficient (K), driving field (B1) and YIG size. The results show that the magnetocrystalline anisotropy induces a MHz-scale frequency shift, splitting the transmission spectrum from a Lorentzian line shape into asymmetric Fano resonance double peaks. The orientation of the external magnetic field (aligned with the [100] or [110] crystallographic axis) allows precise control over the sign of the magnonic Kerr coefficient K, thereby enabling a reversal in the direction of the frequency shift. A strong driving field B1 not only enables controllable switching of the state but also adjusts the switching bandwidth. Furthermore, we show the transition of the dynamical response mechanism of the excitation efficiency spectrum with varying YIG sphere sizes. The study shows the dynamic control mechanism of the magnetocrystalline anisotropy on magnon switching and provides a theoretical foundation for size optimization and nonlinear energy manipulation in spintronic device design.
Keywords:  magnetostrictive effect      Kerr effect      optomechanically induced transparency  
Received:  01 April 2025      Revised:  30 April 2025      Accepted manuscript online:  09 May 2025
PACS:  85.70.Ec (Magnetostrictive, magnetoacoustic, and magnetostatic devices)  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12022507 and 11774113).
Corresponding Authors:  Hao Xiong     E-mail:  haoxiong1217@gmail.com

Cite this article: 

Saisai Yu(鱼赛赛), Junbo Liu(刘竣菠), and Hao Xiong(熊豪) Control of the magnonic excitation under the joint mechanism of magnetostrictive effect and magnetocrystalline anisotropy 2025 Chin. Phys. B 34 068502

[1] Serga A A, Chumak A V and Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 264002
[2] Huang K W, Wang X, Qiu Q Y and Xiong H 2024 Opt. Lett. 49 758
[3] Hou R, Zhang W, Han X, Wang H F and Zhang S 2024 Phys. Rev. A 109 033721
[4] Xu G T, Zhang M, Wang Y, Shen Z and Dong C H 2023 Phys. Rev. Lett. 131 243601
[5] Hisatomi R, Osada A, Tabuchi Y, Ishikawa T, Noguchi A, Yamazaki R, Usami K and Nakamura Y 2016 Phys. Rev. B 93 174427
[6] Ma M, Chen Z, Xie K and Ma F 2022 J. Appl. Phys. 132 210702
[7] Wang X, Huang K W and Xiong H 2024 Phys. Rev. A 110 033702
[8] Chen Z D, Chen P, Wang Y F, Wang W Q, Zhang Z, Lu X Y, Liu R H, Fan X L, Yu G Q and Ma F S 2023 Phys. Rev. B 107 014408
[9] Wang Y Q, Xia J H, Wan C H, Han X F and Yu G Q 2024 Phys. Rev. B 109 054416
[10] Yao X L, Jin Z J, Wang Z Y, Zeng Z Z and Yan P 2023 Phys. Rev. B 108 134427
[11] Cao Y S and Yan P 2019 Phys. Rev. B 99 214415
[12] Wang Z Y, Yuan H Y, Cao Y S, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202
[13] Sun F X, Zheng S S, Xiao Y, Gong Q H, He Q Y and Xia K 2021 Phys. Rev. Lett. 127 087203
[14] Grigoryan V L and Xia K 2022 Phys. Rev. B 106 014404
[15] Yuan H Y, Yan P, Zheng S S, He Q Y, Xia K and Yung M H 2020 Phys. Rev. Lett. 124 053602
[16] Liu G, Wang X G, Luan Z Z, Zhou L F, Xia S Y, Yang B, Tian Y Z, Guo G H, Du J and Wu D 2021 Phys. Rev. Lett. 127 207206
[17] Jin Z Y and Jing J 2023 Phys. Rev. A 108 053702
[18] Yan Y T, Zhao C S, Wang D W, Yang J Y and Zhou L 2024 Phys. Rev. A 109 023710
[19] Liu Z X, Xiong H and Wu Y 2019 IEEE Access 7 57047-57053
[20] Wu W J, Xu D, Qian J, Li J, Wang Y P and You J Q 2022 Chin. Phys. B 31 127503
[21] Ding Y J and Xiao Y 2023 Chin. Phys. B 32 107601
[22] Kong C, Xiong H and Wu Y 2019 Phys. Rev. Applied 12 034001
[23] Zuo X, Fan Z Y, Qian H, Ding M S, Tan H T, Xiong H and Li J 2024 New J. Phys. 26 031201
[24] Joule J P 1842 Ann. Electr. Magn. Chem 8 219
[25] Wang S and Hsu T L 1970 Appl. Phys. Lett. 16 111
[26] Calkins F T, Flatau A B and Dapino M J 2007 J. Intell. Mater. Syst. Struct. 18 1057
[27] Narita F, Wang Z, Kurita H, Li Z, Shi Y, Jia Y and Soutis C 2021 Adv. Mater. 33 2005448
[28] Shen Z, Xu G T, Zhang M, Zhang Y L, Wang Y, Chai C Z, Zou C L, Guo G C and Dong C H 2022 Phys. Rev. Lett. 129 243601
[29] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[30] Zhu G L, Hu C S, Wu Y and Lü X Y 2022 Fundam. Res. 3 63
[31] Huang K W, Wang X, Qiu Q Y, Wu L and Xiong H 2023 Chin. Phys. Lett. 40 104201
[32] Spencer E G and LeCraw R C 1958 Phys. Rev. Lett. 1 241
[33] Zhang X, Zou C L, Jiang L and Tang H X 2016 Sci. Adv. 2 e1501286
[34] Xu Y, Liu J Y, Liu W J and Xiao Y F 2021 Phys. Rev. A 103 053501
[35] Chen Y T, Du L, Zhang Y and Wu J H 2021 Phys. Rev. A 103 053712
[36] Lu T X, Zhang H L, Zhang Q and Jing H 2021 Phys. Rev. A 103 063708
[37] Luo Y X, Cong L J, Zheng Z G, Liu H Y, Ming Y and Yang R C 2023 Opt. Express 31 34764
[38] Qiu W Y, Cheng X H, Chen A X, Lan Y H and Nie W J 2022 Phys. Rev. A 105 063718
[39] Liao Q H, Peng K and Qiu H Y 2023 Chin. Phys. B 32 054205
[40] Xiong H 2023 Fundam. Res. 3 8
[41] Huai S N, Liu Y L, Zhang J, Yang L and Liu Y X 2019 Phys. Rev. A 99 043803
[42] Lu T X, Xiao X, Chen L S, Zhang Q and Jing H 2023 Phys. Rev. A 107 063714
[43] Chowdhury P, Dhagat P and Jander A 2015 IEEE Trans. Magn. 51 1
[44] Li J, Wang Y P, You J Q and Zhu S Y 2022 Natl. Sci. Rev. nwac247
[45] Zhang W, Wang D Y, Bai C H, Wang T, Zhang S and Wang H F 2021 Opt. Express 29 11773
[46] Xiong H 2024 Appl. Phys. Lett. 124 112403
[47] Agarwal G S and Huang M 2010 Phys. Rev. A 81 041803
[48] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[49] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69
[50] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L and Wang H 2011 Phys. Rev. Lett. 107 133601
[51] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603
[52] Wang Y D and Clerk A A 2012 New J. Phys. 14 105010
[53] Tian L 2012 Phys. Rev. Lett. 108 153604
[54] Dong C, Fiore V, Kuzyk M C and Wang H 2012 Science 338 1609
[55] Zhang G, Wang Y and You J 2019 Sci. China-Phys. Mech. Astron. 62 987511
[56] Moslehi M, Baghshahi H R, Faghihi M J and Mirafzali S Y 2023 Phys. Scr. 98 025103
[57] Zhu W Q and Shan W Y 2023 Chin. Phys. B 32 087802
[58] Huang D Q, Wang Y, Wang H, Wang J and Liu Y 2024 Chin. Phys. Lett. 41 047801
[59] Liu Z X, Wang B, Xiong H and Wu Y 2018 Opt. Lett. 43 3698
[60] Zhang Z, Scully M O and Agarwal G S 2019 Phys. Rev. Res. 1 023021
[61] Xiong W, Tian M, Zhang G Q and You J Q 2022 Phys. Rev. B 105 245310
[62] Xiong W, Wang M, Zhang G Q and Chen J 2023 Phys. Rev. A 107 033516
[63] Ji F Z and An J H 2023 Phys. Rev. B 108 L180409
[64] Qin Y, Li S C, Li K and Song J J 2022 Phys. Rev. B 106 054419
[65] Stephen B 2001 Magnetism in Condensed Matter (Oxford: Oxford University Press)
[66] Gurevich A G and Melkov G A 1966 Magnetization Oscillations and Waves (London: CRC Press) pp. 37-53
[67] Stancil D D and Prabhakar A 2009 Spin Waves (Berlin: Springer) 84- 90
[68] Holstein T, and Primakoff H 1940 Phys. Rev. 58, 1098
[69] Zhang G, Wang Y and You J 2019 Sci. China-Phys. Mech. Astron. 62 987511
[70] Li J, Zhu S Y, and Agarwal G S 2018 Phys. Rev. Lett. 121 203601
[71] Xiong H 2025 Sci. China-Phys. Mech. Astron. 68 250313
[1] Nonreciprocal microwave-optical entanglement in Kerr-modified cavity optomagnomechanics
Ming-Yue Liu(刘明月), Yuan Gong(龚媛), Jiaojiao Chen(陈姣姣), Yan-Wei Wang(王艳伟), and Wei Xiong(熊伟). Chin. Phys. B, 2025, 34(5): 057202.
[2] Direct observation of ultrafast magnetization dynamics in Co/Ni bit patterned media by time-resolved scanning Kerr microscopy
Wei Zhang(张伟), Wei He(何为), Qin-Li Lv(吕琴丽), Jian-Wang Cai(蔡建旺), Xiang-Qun Zhang(张向群), and Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2025, 34(4): 047501.
[3] Passive on-chip isolators based on the thin-film lithium niobate platform
Jiacheng Liu(刘嘉成), Gongyu Xia(夏功榆), Qilin Hong(洪琦琳), Pingyu Zhu(朱枰谕), Kai-Kai Zhang(张凯凯), Keyu Xia(夏可宇), Ping Xu(徐平), Shiqiao Qin(秦石乔), and Zhihong Zhu (朱志宏). Chin. Phys. B, 2025, 34(3): 034204.
[4] Nonlinear enhanced mass sensor based on optomechanical system
Xin-Xin Man(满鑫鑫), Jing Sun(孙静), Wen-Zhao Zhang(张闻钊), Lijuan Luo(罗丽娟), and Guangri Jin(金光日). Chin. Phys. B, 2024, 33(12): 120303.
[5] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[6] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[7] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[8] Ideal optomechanically induced transparency generation in a cavity optoelectromechanical system
Jing Wang(王婧) and Xue-Dong Tian(田雪冬). Chin. Phys. B, 2021, 30(10): 104211.
[9] A review of some new perspectives on the theory of superconducting Sr2RuO4
Wen Huang(黄文). Chin. Phys. B, 2021, 30(10): 107403.
[10] Phase-dependent double optomechanically induced transparency in a hybrid optomechanical cavity system with coherently mechanical driving
Shi-Chao Wu(吴士超), Li-Guo Qin(秦立国), Jian Lu(鹿建), Zhong-Yang Wang(王中阳). Chin. Phys. B, 2019, 28(7): 074204.
[11] Multi-window transparency and fast-slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms
Wan-Ying Wei(魏晚迎), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(3): 034204.
[12] Optomechanically induced transparency with Bose–Einstein condensate in double-cavity optomechanical system
Li-Wei Liu(刘利伟), Duo-Jie Gengzang(更藏多杰), Xiu-Jia An(安秀加), Pei-Yu Wang(王培煜). Chin. Phys. B, 2018, 27(3): 034205.
[13] On the nonclassical dynamics of cavity-assisted four-channel nonlinear coupler
Rafael Julius, Abdel-Baset M A Ibrahim, Pankaj Kumar Choudhury, Hichem Eleuch. Chin. Phys. B, 2018, 27(11): 114206.
[14] Adjustable quantum coherence effects in a hybrid optomechanical system
Wen-Qing Xia(夏文清), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2017, 26(5): 054210.
[15] Resonant magneto-optical Kerr effect induced by hybrid plasma modes in ferromagnetic nanovoids
Xia Zhang(张 霞), Lei Shi(石 磊), Jing Li(李晶), Yun-Jie Xia(夏云杰), Shi-Ming Zhou(周仕明). Chin. Phys. B, 2017, 26(11): 117801.
No Suggested Reading articles found!