Abstract Magnetostrictive effects and magnetocrystalline anisotropy are fundamental physical properties governing magnon dynamics in magnetic systems. Recent evidence shows that strain-mediated magnetostrictive coupling provides an effective pathway for modulating magnonic excitation through quantum interference. Nevertheless, the microscopic origins of magnetocrystalline anisotropy in manipulating magnon excitation pathways, particularly regarding magnonic Kerr nonlinearity and crystal direction constraints, require further investigation. In this study, we construct a dual-frequency driven magnomechanical model based on yttrium iron garnet (YIG) spheres. By introducing a Hamiltonian with the magnonic Kerr nonlinear term, we combine the Heisenberg-Langevin equations and the mean field approximation to analytically solve for the driving efficiency , and we base our analysis on experimental parameters to evaluate the impacts of the magnonic Kerr coefficient (), driving field () and YIG size. The results show that the magnetocrystalline anisotropy induces a MHz-scale frequency shift, splitting the transmission spectrum from a Lorentzian line shape into asymmetric Fano resonance double peaks. The orientation of the external magnetic field (aligned with the [100] or [110] crystallographic axis) allows precise control over the sign of the magnonic Kerr coefficient , thereby enabling a reversal in the direction of the frequency shift. A strong driving field not only enables controllable switching of the state but also adjusts the switching bandwidth. Furthermore, we show the transition of the dynamical response mechanism of the excitation efficiency spectrum with varying YIG sphere sizes. The study shows the dynamic control mechanism of the magnetocrystalline anisotropy on magnon switching and provides a theoretical foundation for size optimization and nonlinear energy manipulation in spintronic device design.
Saisai Yu(鱼赛赛), Junbo Liu(刘竣菠), and Hao Xiong(熊豪) Control of the magnonic excitation under the joint mechanism of magnetostrictive effect and magnetocrystalline anisotropy 2025 Chin. Phys. B 34 068502
[1] Serga A A, Chumak A V and Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 264002 [2] Huang K W, Wang X, Qiu Q Y and Xiong H 2024 Opt. Lett. 49 758 [3] Hou R, Zhang W, Han X, Wang H F and Zhang S 2024 Phys. Rev. A 109 033721 [4] Xu G T, Zhang M, Wang Y, Shen Z and Dong C H 2023 Phys. Rev. Lett. 131 243601 [5] Hisatomi R, Osada A, Tabuchi Y, Ishikawa T, Noguchi A, Yamazaki R, Usami K and Nakamura Y 2016 Phys. Rev. B 93 174427 [6] Ma M, Chen Z, Xie K and Ma F 2022 J. Appl. Phys. 132 210702 [7] Wang X, Huang K W and Xiong H 2024 Phys. Rev. A 110 033702 [8] Chen Z D, Chen P, Wang Y F, Wang W Q, Zhang Z, Lu X Y, Liu R H, Fan X L, Yu G Q and Ma F S 2023 Phys. Rev. B 107 014408 [9] Wang Y Q, Xia J H, Wan C H, Han X F and Yu G Q 2024 Phys. Rev. B 109 054416 [10] Yao X L, Jin Z J, Wang Z Y, Zeng Z Z and Yan P 2023 Phys. Rev. B 108 134427 [11] Cao Y S and Yan P 2019 Phys. Rev. B 99 214415 [12] Wang Z Y, Yuan H Y, Cao Y S, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202 [13] Sun F X, Zheng S S, Xiao Y, Gong Q H, He Q Y and Xia K 2021 Phys. Rev. Lett. 127 087203 [14] Grigoryan V L and Xia K 2022 Phys. Rev. B 106 014404 [15] Yuan H Y, Yan P, Zheng S S, He Q Y, Xia K and Yung M H 2020 Phys. Rev. Lett. 124 053602 [16] Liu G, Wang X G, Luan Z Z, Zhou L F, Xia S Y, Yang B, Tian Y Z, Guo G H, Du J and Wu D 2021 Phys. Rev. Lett. 127 207206 [17] Jin Z Y and Jing J 2023 Phys. Rev. A 108 053702 [18] Yan Y T, Zhao C S, Wang D W, Yang J Y and Zhou L 2024 Phys. Rev. A 109 023710 [19] Liu Z X, Xiong H and Wu Y 2019 IEEE Access 7 57047-57053 [20] Wu W J, Xu D, Qian J, Li J, Wang Y P and You J Q 2022 Chin. Phys. B 31 127503 [21] Ding Y J and Xiao Y 2023 Chin. Phys. B 32 107601 [22] Kong C, Xiong H and Wu Y 2019 Phys. Rev. Applied 12 034001 [23] Zuo X, Fan Z Y, Qian H, Ding M S, Tan H T, Xiong H and Li J 2024 New J. Phys. 26 031201 [24] Joule J P 1842 Ann. Electr. Magn. Chem 8 219 [25] Wang S and Hsu T L 1970 Appl. Phys. Lett. 16 111 [26] Calkins F T, Flatau A B and Dapino M J 2007 J. Intell. Mater. Syst. Struct. 18 1057 [27] Narita F, Wang Z, Kurita H, Li Z, Shi Y, Jia Y and Soutis C 2021 Adv. Mater. 33 2005448 [28] Shen Z, Xu G T, Zhang M, Zhang Y L, Wang Y, Chai C Z, Zou C L, Guo G C and Dong C H 2022 Phys. Rev. Lett. 129 243601 [29] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [30] Zhu G L, Hu C S, Wu Y and Lü X Y 2022 Fundam. Res. 3 63 [31] Huang K W, Wang X, Qiu Q Y, Wu L and Xiong H 2023 Chin. Phys. Lett. 40 104201 [32] Spencer E G and LeCraw R C 1958 Phys. Rev. Lett. 1 241 [33] Zhang X, Zou C L, Jiang L and Tang H X 2016 Sci. Adv. 2 e1501286 [34] Xu Y, Liu J Y, Liu W J and Xiao Y F 2021 Phys. Rev. A 103 053501 [35] Chen Y T, Du L, Zhang Y and Wu J H 2021 Phys. Rev. A 103 053712 [36] Lu T X, Zhang H L, Zhang Q and Jing H 2021 Phys. Rev. A 103 063708 [37] Luo Y X, Cong L J, Zheng Z G, Liu H Y, Ming Y and Yang R C 2023 Opt. Express 31 34764 [38] Qiu W Y, Cheng X H, Chen A X, Lan Y H and Nie W J 2022 Phys. Rev. A 105 063718 [39] Liao Q H, Peng K and Qiu H Y 2023 Chin. Phys. B 32 054205 [40] Xiong H 2023 Fundam. Res. 3 8 [41] Huai S N, Liu Y L, Zhang J, Yang L and Liu Y X 2019 Phys. Rev. A 99 043803 [42] Lu T X, Xiao X, Chen L S, Zhang Q and Jing H 2023 Phys. Rev. A 107 063714 [43] Chowdhury P, Dhagat P and Jander A 2015 IEEE Trans. Magn. 51 1 [44] Li J, Wang Y P, You J Q and Zhu S Y 2022 Natl. Sci. Rev. nwac247 [45] Zhang W, Wang D Y, Bai C H, Wang T, Zhang S and Wang H F 2021 Opt. Express 29 11773 [46] Xiong H 2024 Appl. Phys. Lett. 124 112403 [47] Agarwal G S and Huang M 2010 Phys. Rev. A 81 041803 [48] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520 [49] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69 [50] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L and Wang H 2011 Phys. Rev. Lett. 107 133601 [51] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603 [52] Wang Y D and Clerk A A 2012 New J. Phys. 14 105010 [53] Tian L 2012 Phys. Rev. Lett. 108 153604 [54] Dong C, Fiore V, Kuzyk M C and Wang H 2012 Science 338 1609 [55] Zhang G, Wang Y and You J 2019 Sci. China-Phys. Mech. Astron. 62 987511 [56] Moslehi M, Baghshahi H R, Faghihi M J and Mirafzali S Y 2023 Phys. Scr. 98 025103 [57] Zhu W Q and Shan W Y 2023 Chin. Phys. B 32 087802 [58] Huang D Q, Wang Y, Wang H, Wang J and Liu Y 2024 Chin. Phys. Lett. 41 047801 [59] Liu Z X, Wang B, Xiong H and Wu Y 2018 Opt. Lett. 43 3698 [60] Zhang Z, Scully M O and Agarwal G S 2019 Phys. Rev. Res. 1 023021 [61] Xiong W, Tian M, Zhang G Q and You J Q 2022 Phys. Rev. B 105 245310 [62] Xiong W, Wang M, Zhang G Q and Chen J 2023 Phys. Rev. A 107 033516 [63] Ji F Z and An J H 2023 Phys. Rev. B 108 L180409 [64] Qin Y, Li S C, Li K and Song J J 2022 Phys. Rev. B 106 054419 [65] Stephen B 2001 Magnetism in Condensed Matter (Oxford: Oxford University Press) [66] Gurevich A G and Melkov G A 1966 Magnetization Oscillations and Waves (London: CRC Press) pp. 37-53 [67] Stancil D D and Prabhakar A 2009 Spin Waves (Berlin: Springer) 84- 90 [68] Holstein T, and Primakoff H 1940 Phys. Rev. 58, 1098 [69] Zhang G, Wang Y and You J 2019 Sci. China-Phys. Mech. Astron. 62 987511 [70] Li J, Zhu S Y, and Agarwal G S 2018 Phys. Rev. Lett. 121 203601 [71] Xiong H 2025 Sci. China-Phys. Mech. Astron. 68 250313
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.