Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 068701    DOI: 10.1088/1674-1056/adc666
RAPID COMMUNICATION Prev   Next  

Simple robot swarm with magnetic coupling connections can collaboratively accomplish collective tasks

Xingyu Ma(马星宇)1,†, Chuyun Wang(汪楚云)2,†, Jing Wang(王璟)3, Huaicheng Chen(陈怀城)3, Gao Wang(王高)3,‡, and Liyu Liu(刘雳宇)1,4,§
1 School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China;
2 Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, China;
3 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China;
4 College of Physics, Chongqing University, Chongqing 401331, China
Abstract  The use of robotic swarms to study the properties of active matter is a common experimental approach. In such studies, robots are often required to possess capabilities in computation, storage, perception, and two-dimensional (2D) movement to execute predefined rules. Under these rules, the swarm can accomplish complex tasks, exhibit rich collective states, or demonstrate intriguing phase transition phenomena. However, this study demonstrates how a swarm of spin robots, which only respond to simple ambient light intensity, can be constructed into a collective system capable of performing practical swarm tasks such as phototactic motion, controllable folding, and object transport through weak coupling interactions between individuals. Furthermore, it is proven that this swarm exhibits strong system fault tolerance. This research aims to demonstrate that, beyond the common design of sophisticated individuals and excellent inter-individual interaction rules, appropriate structural and coupling designs can enable individuals without computational capabilities to generate complex collective behaviors and accomplish diverse swarm tasks through cooperation. This provides a research direction for experimental studies of active matter using robotic systems.
Keywords:  collective behavior      active matter      robot swarm  
Received:  28 February 2025      Revised:  25 March 2025      Accepted manuscript online:  28 March 2025
PACS:  71.45.-d (Collective effects)  
  87.85.St (Robotics)  
  45.40.Ln (Robotics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. T2350007, 12404239, and 12174041) and the Seed Grants from the Wenzhou Institute, University of the Chinese Academy of Sciences (Grant No. WIUCASQD2021002).
Corresponding Authors:  Gao Wang, Liyu Liu     E-mail:  wanggao@ucas.ac.cn;liu@iphy.ac.cn

Cite this article: 

Xingyu Ma(马星宇), Chuyun Wang(汪楚云), Jing Wang(王璟), Huaicheng Chen(陈怀城), Gao Wang(王高), and Liyu Liu(刘雳宇) Simple robot swarm with magnetic coupling connections can collaboratively accomplish collective tasks 2025 Chin. Phys. B 34 068701

[1] Kaspar C, Ravoo B J, Van Der Wiel W G, Wegner S V and Pernice W H P 2021 Nature 594 345
[2] Dorigo M, Theraulaz G and Trianni V 2021 Proc. IEEE 109 1152
[3] Wang G, Phan T V, Li S, Wombacher M, Qu J, Peng Y, Chen G, Goldman D I, Levin S A, Austin R H and Liu L 2021 Phys. Rev. Lett. 126 108002
[4] Slavkov I, Carrillo-Zapata D, Carranza N, Diego X, Jansson F, Kaandorp J, Hauert S and Sharpe J 2018 Sci. Robot. 3 eaau9178
[5] Li S, Dutta B, Cannon S, Daymude J J, Avinery R, Aydin E, Richa A W, Goldman D I and Randall D 2021 Sci. Adv. 7 eabe8494
[6] Ceron S, Gardi G, Petersen K and Sitti M 2023 Proc. Natl. Acad. Sci. USA 120 e2221913120
[7] Wang G, Phan T V, Li S, Wang J, Peng Y, Chen G, Qu J, Goldman D I, Levin S A, Pienta K, Amend S, Austin R H and Liu L 2022 Proc. Natl. Acad. Sci. USA 119 e2120019119
[8] Jin Y, Wang G, Yuan D, Wang P, Wang J, Chen H, Liu L and Zan X 2023 Chin. Phys. B 32 088703
[9] Xie H, Sun M, Fan X, Lin Z, ChenW,Wang L, Dong L and He Q 2019 Sci. Robot. 4 eaav8006
[10] Bredeche N, Haasdijk E and Prieto A 2018 Front. Robot. AI 5 12
[11] Doncieux S, Bredeche N, Mouret J B and Eiben A E (Gusz) 2015 Front. Robot. AI 2
[12] Devlin M R, Kim S, Campàs O and Hawkes E W 2025 Science 387 880
[13] Saintyves B, Spenko M and Jaeger H M 2024 Sci. Robot. 9 eadh4130
[14] Wang J,Wang G, Chen H, Liu Y,Wang P, Yuan D, Ma X, Xu X, Cheng Z, Ji B, Yang M, Shuai J, Ye F, Wang J, Jiao Y and Liu L 2024 Nat. Commun. 15 8853
[15] Fruchart M, Hanai R, Littlewood P B and Vitelli V 2021 Nature 592 363
[16] Bonnet F, Mills R, Szopek M, Schönwetter-Fuchs S, Halloy J, Bogdan S, Correia L, Mondada F and Schmickl T 2019 Sci. Robot. 4 eaau7897
[17] Lavergne F A, Wendehenne H, Bäuerle T and Bechinger C 2019 Science 364 70
[18] Chen J, Lei X, Xiang Y, Duan M, Peng X and Zhang H P 2024 Phys. Rev. Lett. 132 118301
[19] Li S, Batra R, Brown D, Chang H D, Ranganathan N, Hoberman C, Rus D and Lipson H 2019 Nature 567 361
[20] Rubenstein M, Cornejo A and Nagpal R 2014 Science 345 795
[21] Aguilar W, SantamarA-a-Bonfil G, Froese T and Gershenson C 2014 Front. Robot. AI 1
[22] Duan H, Huo M and Fan Y 2023 Natl. Sci. Rev. 10 nwad040
[23] Chen C J and Bechinger C 2022 New J. Phys. 24 033001
[24] Mathews N, Christensen A L, O’Grady R, Mondada F and Dorigo M 2017 Nat. Commun. 8 439
[25] Berlinger F, Gauci M and Nagpal R 2021 Sci. Robot. 6 eabd8668
[26] SavoieW, Berrueta T A, Jackson Z, Pervan A,Warkentin R, Li S, Murphey T D,Wiesenfeld K and Goldman D I 2019 Sci. Robot. 4 eaax4316
[27] Aguilar J, Zhang T, Qian F, Kingsbury M, McInroe B, Mazouchova N, Li C, Maladen R, Gong C, Travers M, Hatton R L, Choset H, Umbanhowar P B and Goldman D I 2016 Rep. Prog. Phys. 79 110001
[28] Yuan D, Wang P, Wang P, Ma X, Wang C, Wang J, Chen H, Wang G and Ye F 2024 Chin. Phys. B 33 060702
[29] Woodhouse F G and Dunkel J 2017 Nat. Commun. 8 15169
[30] Chen J, Hu J and Kapral R 2024 Adv. Sci. 11 2305695
[31] Yang Q, Zhu H, Liu P, Liu R, Shi Q, Chen K, Zheng N, Ye F and Yang M 2021 Phys. Rev. Lett. 126 198001
[32] Soto F, Karshalev E, Zhang F, Esteban Fernandez De Avila B, Nourhani A and Wang J 2022 Chem. Rev. 122 5365
[33] Deblais A, Barois T, Guerin T, Delville P H, Vaudaine R, Lintuvuori J S, Boudet J F, Baret J C and Kellay H 2018 Phys. Rev. Lett. 120 188002
[34] Scholz C, Engel M and Pöschel T 2018 Nat. Commun. 9 931
[35] Gardi G, Ceron S,WangW, Petersen K and Sitti M 2022 Nat. Commun. 13 2239
[36] Porvatov V A, Rozenblit A D, Dmitriev A A, Burmistrov O I, Petrova D A, Gritsenko G Y, Puhtina E M, Kretov E I, Filonov D S, Souslov A and Olekhno N A 2021 J. Phys. Conf. Ser. 2086 012202
[37] Han Y, Alsayed A M, Nobili M, Zhang J, Lubensky T C and Yodh A G 2006 Science 314 626
[38] Rehfeldt F and Weiss M 2023 Soft Matter 19 5206
[39] Huang H W, Uslu F E, Katsamba P, Lauga E, Sakar M S and Nelson B J 2019 Sci. Adv. 5 eaau1532
[40] Yu W, Lin H, Wang Y, He X, Chen N, Sun K, Lo D, Cheng B, Yeung C, Tan J, Di Carlo D and Emaminejad S 2020 Sci. Robot. 5 eaba4411
  • 1. .mp4(3064KB)

  • 2. .mp4(2179KB)

  • 3. .mp4(1146KB)

[1] Enhancing phase separation of double-chiral particles by regulating inter-chiral frustration
Yi-Chen Lu(陆羿辰), Wan-Rou Cai(蔡婉柔), Meng-Chu Wang(王梦楚), Ya-Li Liu(刘雅莉), Tong Zhu(朱童), Yi-Lin Zhou(周怡琳), Tian-Chen Yu(余天晨), Yun-Xuan Ji(纪蕴轩), Ming-Qian Ao(敖明茜), Chen-Lu Li(李晨璐), Cheng-Xu Yan(颜乘旭), and Zhi-Gang Zheng(郑志刚). Chin. Phys. B, 2025, 34(8): 080506.
[2] Effects of potential field delay and coupling delay on collective behavior of a fractional-order coupled system in a dichotomous fluctuating potential
Yangfan Zhong(钟扬帆), Xi Chen(陈熙), Maokang Luo(罗懋康), and Tao Yu(蔚涛). Chin. Phys. B, 2025, 34(5): 050501.
[3] Disorder-to-order transition induced by spontaneous cooling regulation in robotic active matter
Shuaixu Hou(侯帅旭), Gao Wang(王高), Xingyu Ma(马星宇), Chuyun Wang(汪楚云), Peng Wang(王鹏), Huaicheng Chen(陈怀城), Liyu Liu(刘雳宇), and Jing Wang(王璟). Chin. Phys. B, 2024, 33(7): 078701.
[4] Bio-inspired environmental adaptability of swarm active matter
Yangkai Jin(金阳凯), Gao Wang(王高), Daming Yuan(袁大明), Peilong Wang(王培龙), Jing Wang(王璟), Huaicheng Chen(陈怀城), Liyu Liu(刘雳宇), and Xingjie Zan(昝兴杰). Chin. Phys. B, 2023, 32(8): 088703.
[5] Turing/Turing-like patterns: Products of random aggregation of spatial components
Jian Gao(高见), Xin Wang(王欣), Xinshuang Liu(刘心爽), and Chuansheng Shen(申传胜). Chin. Phys. B, 2023, 32(7): 070503.
[6] Orderly hysteresis in field-driven robot swarm active matter
Yanping Liu(刘艳萍), Gao Wang(王高), Peilong Wang(王培龙), Daming Yuan(袁大明), Shuaixu Hou(侯帅旭), Yangkai Jin(金阳凯), Jing Wang(王璟), and Liyu Liu(刘雳宇). Chin. Phys. B, 2023, 32(6): 068701.
[7] Spatial distribution order parameter prediction of collective system using graph network
Huimin Zhao(赵慧敏), Rui Wang(王瑞), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2023, 32(5): 056402.
[8] Graph dynamical networks for forecasting collective behavior of active matter
Yanjun Liu(刘彦君), Rui Wang(王瑞), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2022, 31(11): 116401.
[9] Active thermophoresis and diffusiophoresis
Huan Liang(梁欢), Peng Liu(刘鹏), Fangfu Ye(叶方富), and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(10): 104702.
[10] Simulation of microswimmer hydrodynamics with multiparticle collision dynamics
Andreas Z?ttl. Chin. Phys. B, 2020, 29(7): 074701.
[11] Symmetry properties of fluctuations in an actively driven rotor
He Li(李赫), Xiang Yang(杨翔), Hepeng Zhang(张何朋). Chin. Phys. B, 2020, 29(6): 060502.
[12] Diffusional inhomogeneity in cell cultures
Jia-Zheng Zhang(张佳政), Na Li(李娜), Wei Chen(陈唯). Chin. Phys. B, 2018, 27(2): 028705.
[13] Collective motion of active particles in environmental noise
Qiu-shi Chen(陈秋实), Ming Ji(季铭). Chin. Phys. B, 2017, 26(9): 098903.
[14] Anomalous boundary deformation induced by enclosed active particles
Wen-De Tian(田文得), Yan Gu(顾燕), Yong-Kun Guo(郭永坤), Kang Chen(陈康). Chin. Phys. B, 2017, 26(10): 100502.
[15] Asymmetric and symmetric meta-correlations in financial markets
Xiaohui Li(李晓辉), Xiangying Shen(沈翔瀛), Jiping Huang(黄吉平). Chin. Phys. B, 2016, 25(10): 108903.
No Suggested Reading articles found!