Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 094208    DOI: 10.1088/1674-1056/add4f9
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Compact self-pulsed Tm:GdScO3 laser with narrow pulse width

Bangzheng Liu(刘邦政)1,2, Xiangyu Li(李翔宇)1,2, Jiahao Dong(董佳昊)1,2, Lu Zhang(张璐)1,2, and Linjun Li(李林军)1,2,†
1 College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China;
2 Research Center for Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
Abstract  A self-pulsed Tm:GdScO$_{3}$ laser was experimentally demonstrated by using a compact linear resonant cavity. When the pump power was 19.6 W, an average output power of 1771 mW was achieved from the self-pulsed Tm:GdScO$_{3}$ laser with a pulse width of 158.1 ns and a pulse repetition frequency of 112.8 kHz, corresponding to an optical-to-optical conversion efficiency of 9.0%. Moreover, a single pulse energy of 15.7 μJ and a pulse peak power of 99.3 W were acquired from the self-pulsed Tm:GdScO$_{3}$ laser. This is, as we know, the first time that the self-pulsed laser output at 2-μm waveband range was obtained by utilizing a Tm:GdScO$_{3}$ crystal so far.
Keywords:  self-pulsed laser      Tm:GdScO$_{3}$ crystal      pulse width  
Received:  22 February 2025      Revised:  03 April 2025      Accepted manuscript online:  07 May 2025
PACS:  42.55.Xi (Diode-pumped lasers)  
  42.60.Gd (Q-switching)  
  42.55.Rz (Doped-insulator lasers and other solid state lasers)  
Fund: Project supported by the Key Research and Development Plan of Xinjiang Uygur Autonomous Region, China (Grant Nos. 2022B01040 and 2022B01040-2) and the Key Project of Heilongjiang Natural Science Foundation (Grant No. ZD2021F002).
Corresponding Authors:  Linjun Li     E-mail:  ljli@ms.xjb.ac.cn

Cite this article: 

Bangzheng Liu(刘邦政), Xiangyu Li(李翔宇), Jiahao Dong(董佳昊), Lu Zhang(张璐), and Linjun Li(李林军) Compact self-pulsed Tm:GdScO3 laser with narrow pulse width 2025 Chin. Phys. B 34 094208

[1] Li K, Niu C, Wu C T, Yu Y J and Ma Y 2023 Sensors 23 7024
[2] Cao X, Zhu Q, Xian A H, Liu Y Y, Liu G M, Li L Y, Li X N, Xu X D, Zhou W, Wang H T, Huang H T, Jia B H, Wang Y S, Wang J R, Tang D Y and Shen D Y 2022 Opt. Laser Technol. 152 108096
[3] Liu G Y, Chen Y, Yao B Q, Yang K, Qian C P, Dai T Y and Duan X M 2019 Appl. Phys. B 125 233
[4] He X, Hao Q Q, Wang H L, Yu S, Zhou Y, Guo B and Li L J 2024 Laser Photon. Rev. 18 2300588
[5] Feng X Y, Li F, Wang C, Zhang Z, Liu J J, Liu J, Su L B and Zhang H 2023 Opt. Laser Technol. 163 109343
[6] Yu K C, Shi H C, Zhang P L, Yu Z S, Yan H and Lu Q H 2024 J. Mater. Sci. 59 1819
[7] Zhao Y G, Wang L, Chen W D, Loiko P, Mateos X, Xu X D, Liu Y, Shen D Y,Wang Z P, Xu X G, Griebner U and Petrov V 2021 Photonics Res. 9 357
[8] Li L J, Yang X N, Zhou L, Xie W Q, Wang Y L, Shen Y J, Yang Y Q, Yang W L, Wang W, Lv Z, Duan X M and Chen M H 2018 Photonics Res. 6 614
[9] Nahear R, Bach Y and Noach S 2022 Opt. Laser Technol. 146 107548
[10] Jin Y C, Li K, Lv J W, Dong L L, Wang P F, Liu J T, Diao D S and Liu S D 2024 IEEE Photonics Technol. Lett. 36 815
[11] Wan L, Yang Z Q, Zhou W F, Wen M X, Feng T H, Zeng S Q, Liu D, Li H, Pan J S, Zhu N, LiuWP and Li Z H 2022 Light-Sci. Appl. 11 145
[12] Huang H T, Wang L, Shen D Y, Zhang J and Tang D Y 2015 IEEE Photonics J. 7 1504207
[13] Pan H, Chu HW, Pan Z B, Zhao S Z, Li G Q, Cai H Q and Li D C 2020 J. Lumines. 227 117560
[14] Rasmussen T S, Yu Y and Mork J 2017 Laser Photon. Rev. 11 1700089
[15] Wang L, Huang H T, Shen D Y, Zhang J, Chen H and Tang D Y 2017 Laser Phys. Lett. 14 045803
[16] Walsh B M, Barnes N P, Petros M, Yu J R and Singh U N 2004 J. Appl. Phys. 95 3255
[17] Song Q S, Zhang N, Liu J, Qian X Y, Zhang C Y, Xue Y Y, Zhao Y G, Xu X D, Lebbou K and Xu J 2023 Opt. Lett. 48 640
[18] Li S M, Fang Q N, Zhang Y H, Tao L L, Zhang J X, Quan C, Sun D L, Zhao C C and Hang Y 2021 Opt. Laser Technol. 143 107345
[19] Li S M, Tao S L, Zhang S Y, Cai E L, Fang Q N, Zhang Y H, He M Z, Chen G Z, Cai S, Liu J, Xu M, Zhao C C, Hang Y and Ye X S 2022 Opt. Laser Technol. 156 108628
[20] Qi C, Hu X H, Du L, Li S M, Wang H X, Sun G C, Zhao J X, Guo G H, Guo J, Wang M R, Zhang S Y and Hang Y 2025 IEEE Photonics Technol. Lett. 37 9
[21] Li L J, Zhou L, Yang X N, Xie W Q, Shen Y J, Chen M H, Yang Y Q, YangWL, Duan XMand LiMQ 2019 IEEE Photonics J. 11 1501807
[22] Shang P J, Luo D B and Wang S Y 2025 Opt. Laser Technol. 185 112574
[23] Yan B Z, Zhang B T, He J L, Nie H K, Li G R, Liu J T, Shi B N, Wang R H and Yang K J 2019 Opt. Lett. 44 451
[24] Liu P, Jin L, Liu X, Huang H T, Zhang J, Tang D Y and Shen D Y 2016 IEEE Photonics J. 8 1504007
[25] Gao L L, Zhai X J, Jiang L Y, Sui Q X, Niu D Q, Zhang Q L, Lan R J and Shen Y J 2024 Opt. Express 32 3688
[26] Li J Y, Shang P J, Gong Y F, Guo Q, Ma F Q, Li B B, Li L Q andWang S Y 2023 Opt. Express 31 36859
[27] Cai W, Liu J, Li C, Zhu H T, Ge P G, Zheng L H, Su L B and Xu J 2015 Opt. Commun. 334 287
[28] Zhang B, Li L, He C J, Tian F J, Yang X T, Cui J H, Zhang J Z and Sun W M 2018 Opt. Laser Technol. 100 103
[29] Zhang W, Bai H L, Guo L P and Li M X 2020 Infrared Phys. Technol. 105 103208
[30] Kang P Q, Zhang S, Zhang X L and Huang J J 2022 Infrared Phys. Technol. 123 104117
[31] Kang P Q, Zhang X L, Pang S, Jing X F, Chen C H and Huang J J 2023 Opt. Laser Technol. 161 109207
[32] Ma Z Y, Hao Q Q, Wang H L, Sun X D and Li L J 2024 Opt. Lett. 49 2429
[1] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[2] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[3] All-fiberized very-large-mode-area Yb-doped fiber based high-peak-power narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Min Yang(杨敏), Ping-Xue Li(李平雪), Dong-Sheng Wang(王东生), Ke-Xin Yu(于可新), Xue-Yan Dong(董雪岩), Ting-Ting Wang(王婷婷), Chuan-Fei Yao(姚传飞), and Wei-Xin Yang(杨卫鑫). Chin. Phys. B, 2020, 29(11): 114206.
[4] Passively Q-switched diode-pumped Tm, Ho: LuVO4 laser with a black phosphorus saturable absorber
Linjun Li(李林军), Tianxin Li(李天鑫), Long Zhou(周龙), Jianying Fan(范剑英), Yuqiang Yang(杨玉强), Wenqiang Xie(谢文强), Shasha Li(李莎莎). Chin. Phys. B, 2019, 28(9): 094205.
[5] Charge-state populations for the neon-XFEL system
Ping Deng(邓萍), Gang Jiang(蒋刚). Chin. Phys. B, 2019, 28(6): 063203.
[6] Modeling and understanding of the thermal failure induced by high power microwave in CMOS inverter
Yu-Hang Zhang(张宇航), Chang-Chun Chai(柴常春), Yang Liu(刘阳), Yin-Tang Yang(杨银堂), Chun-Lei Shi(史春蕾), Qing-Yang Fan(樊庆扬), Yu-Qian Liu(刘彧千). Chin. Phys. B, 2017, 26(5): 058502.
[7] Flexible pulses from carbon nanotubes mode-locked fiber laser
Ling-Zhen Yang(杨玲珍), Yi Yang(杨义), Juan-Fen Wang(王娟芬). Chin. Phys. B, 2016, 25(12): 124203.
[8] Effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier
Song Rui (宋锐), Lei Cheng-Min (雷成敏), Chen Sheng-Ping (陈胜平), Wang Ze-Feng (王泽锋), Hou Jing (侯静). Chin. Phys. B, 2015, 24(8): 084207.
[9] Comparison of performance between bipolar and unipolar double-frequency sinusoidal pulse width modulation in a digitally controlled H-bridge inverter system
Lei Bo (雷博), Xiao Guo-Chun (肖国春), Wu Xuan-Lü (吴旋律). Chin. Phys. B, 2013, 22(6): 060509.
[10] Effects of microwave pulse-width damage on a bipolar transistor
Ma Zhen-Yang(马振洋), Chai Chang-Chun(柴常春), Ren Xing-Rong(任兴荣), Yang Yin-Tang(杨银堂), Chen Bin(陈斌), and Zhao Ying-Bo(赵颖博) . Chin. Phys. B, 2012, 21(5): 058502.
[11] The characteristics of sonoluminescence
An Yu(安宇) and Zhang Wen-Juan(张文娟) . Chin. Phys. B, 2012, 21(1): 017806.
[12] Performance of gain-switched all-solid-state quasi-continuous-wave tunable Ti:sapphire laser system
Ding Xin(丁欣), Zhang Heng(张衡), Wang Rui(王睿), Yu Xuan-Yi(禹宣伊), Wen Wu-Qi(温午麒), Zhang Bai-Gang(张百钢), Wang Peng(王鹏), and Yao Jian-Quan(姚建铨). Chin. Phys. B, 2008, 17(10): 3759-3764.
[13] Theoretical and experimental investigations of quasi-continuous wave diode array side-pumped Yb:YAG slab laser
Wu Hai-Sheng (吴海生), Yan Ping (闫平), Gong Ma-Li (巩马理), Liu Qiang (柳强). Chin. Phys. B, 2004, 13(6): 871-876.
No Suggested Reading articles found!