Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 090501    DOI: 10.1088/1674-1056/add248
GENERAL Prev   Next  

Chattering-free terminal sliding mode control based on adaptive exponential reaching barrier function for a chaotic permanent magnet synchronous generator in offshore wind turbine system

Aissa Benabdeseelam1, Manal Messadi1, Karim Kemih1,†, Hamid Hamiche2
1 L2EI Laboratory, Jijel University, BP 98 Ouled Aissa, Jijel 18000, Algeria;
2 Laboratoire de Conception et Conduite des Systèmes de Production (L2CSP), Mouloud Mammeri University, Tizi-Ouzou, Algeria
Abstract  This paper introduces a novel chattering-free terminal sliding mode control (SMC) strategy to address chaotic behavior in permanent magnet synchronous generators (PMSG) for offshore wind turbine systems. By integrating an adaptive exponential reaching law with a continuous barrier function, the proposed approach eliminates chattering and ensures robust performance under model uncertainties. The methodology combines adaptive SMC with dynamic switching to estimate and compensates for unknown uncertainties, providing smooth and stable control. Finally, the performance and effectiveness of the proposed approach are compared with those of a previous study.
Keywords:  permanent magnet synchronous generator      chaotic system      terminal sliding mode control      exponential reaching      adaptive barrier function      chattering-free      unknown uncertainty  
Received:  12 March 2025      Revised:  27 April 2025      Accepted manuscript online:  30 April 2025
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  02.30.Yy (Control theory)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Corresponding Authors:  Karim Kemih     E-mail:  k.kemih@gmail.com

Cite this article: 

Aissa Benabdeseelam, Manal Messadi, Karim Kemih, Hamid Hamiche Chattering-free terminal sliding mode control based on adaptive exponential reaching barrier function for a chaotic permanent magnet synchronous generator in offshore wind turbine system 2025 Chin. Phys. B 34 090501

[1] Tong W 2010 Wind Power Generation and Wind Turbine Design (WIT Press)
[2] Ashuri T, Zaaijer M B, Martins J R, Van Bussel G J and Van Kuik G A 2014 Renew. Energy 68 893
[3] Burton T, Jenkins N, Sharpe D and Bossanyi E 2011 Wind Energy Handbook (John Wiley & Sons)
[4] Mechter A, Kemih K and Ghanes M 2016 Nonlinear Dyn. 84 2435
[5] Rolan A, Luna A, Vazquez G, Aguilar D and Azevedo G 2009 Proc. IEEE Int. Symp. Ind. Electron. 734
[6] Luo N, Vidal Y and Acho L (ed.) 2014 Wind Turbine Control and Monitoring (Springer Int. Publ., Basel)
[7] Li Z, Park J B, Joo Y H, Zhang B and Chen G 2002 IEEE Trans. Circuits Syst. I 49 383
[8] Zheng X, Li H, Song R and Feng Y 2016 Proc. IEEE Conf. Ind. Electron. Appl. 2419
[9] Yu J, Yu H, Chen B, Gao J and Qin Y 2012 Nonlinear Dyn. 70 1879
[10] Maeng G and Choi H H 2013 Nonlinear Dyn. 74 571
[11] Choi H H and Jung J W 2012 Nonlinear Dyn. 67 1717
[12] Choi H H 2012 Nonlinear Dyn. 69 1311
[13] Karimi A, Akbari H, Mousavi S and Beheshtipour Z 2023 Syst. Sci. Control Eng. 11 2207593
[14] Boccaletti S, Grebogi C, Lai Y C, et al. 2000 Phys. Rep. 329 103
[15] Chen Y and Leung A Y T 2012 Bifurcation and Chaos in Engineering (Springer)
[16] Rajagopal K, Karthikeyan A and Duraisamy P 2017 Nonlinear Eng. 6 79
[17] Ott E, Grebogi C and James A 1990 Phys. Rev. Lett. 64 1196
[18] Li H, Liao X, Li C and Li C 2011 Neurocomputing 74 3212
[19] Takhi H, Kemih K, Moysis L, et al. 2021 Math. Comput. Simul. 181 150
[20] Wang S, Yousefpour A, Yusuf A, Jahanshahi H, Alcaraz R, He S and Munoz-Pacheco J M 2020 Entropy 22 271
[21] Ablay G 2009 Nonlinear Anal.: Hybrid Syst. 3 531
[22] Zhang X, Liu X and Zhu Q 2014 Appl. Math. Comput. 232 431
[23] Lin W 2008 Phys. Lett. A 372 3195
[24] Roldán-Caballero A, Pérez-Cruz J H, Hernández-Márquez E et al. 2023 Complexity 2023 2881192
[25] Zhang H, Qin H and Chen G 1998 Int. J. Bifurcat. Chaos 8 2041
[26] JohansyahMD, Sambas A, Vaidyanathan S et al. 2024 Nonlinear Dyn. Syst. Theory 24 275
[27] Kemih K, Halimi M, Ghanes M, et al. 2014 Eur. Phys. J. Spec. Top. 223 1579
[28] Takhi H, Kemih K, Moysis L et al. 2020 Int. J. Dyn. Control 8 973
[29] Kemih K 2009 Chaos Solitons Fractals 41 1897
[30] Takhi H, Kemih K, Moysis L, Volos C, Kemih K and Ghanes M 2020 Int. J. Dyn. Control 8 973
[31] Messadi M, Mellit A, Kemih K, et al. 2014 Nonlinear Phenom. Complex Syst. 17 183
[32] Takhi H, Moysis L, Machkour N, et al. 2022 Eur. Phys. J. Spec. Top. 231 443
[33] Chen J and Shi Y 2021 Philos. Trans. R. Soc. A 379 20200371
[34] Messadi M, Mellit A, Kemih K and Ghanes M 2015 Chin. Phys. B 24 010502
[35] Hamiche H, Kemih K, Ghanes M, et al. 2011 Nonlinear Anal. 74 1146
[36] Kemih K, Kemiha A and Ghanes M 2009 Chaos Solitons Fractals 42 735
[37] Kemih K, Bouraoui H, Messadi M, et al. 2013 Acta Phys. Pol. A 123 193
[38] Shao K, Zheng J, Tang R, Li X, Man Z and Liang B 2022 IEEE/ASME Trans. Mechatronics 27 4258
[39] Laghrouche S, Harmouche M, Chitour Y, Obeid H and Fridman L M 2021 Automatica 123 109355
[40] Mobayen S, Alattas K A and Assawinchaichote W 2021 IEEE Trans. Circuits Syst. I 68 4403
[41] Xiu C and Guo P 2018 IEEE Access 6 49793
[42] Drakunov S V and Utkin V I 1992 Int. J. Control 55 1029
[43] Plestan F, Shtessel Y, Bregeault V and Poznyak A 2010 Int. J. Control 83 1907
[44] Dong Z and Ma J 2020 IEEE Access 8 143359
[45] Sepestanaki M A, Bahmani H, Ali M A, Jalilvand A, Mobayen S and Fekih A 2022 IEEE Access 10 34296
[46] Obeid H, Fridman L M, Laghrouche S and Harmouche M 2018 Automatica 93 540
[47] Sepestanaki M A, Barhaghtalab M H, Mobayen S, Jalilvand A, Fekih A and Skruch P 2022 IEEE Access 10 103469
[48] Mechter A, Kemih K and Ghanes M 2015 Acta Phys. Pol. Hung. 12 167
[1] An enhanced fingerprint template protection scheme based on four-dimensional superchaotic system and dynamic DNA coding
Baiqiang Hu(胡百强), Jiahui Liu(刘嘉辉), and Zhe Liu(刘喆). Chin. Phys. B, 2025, 34(7): 070505.
[2] A color image encryption scheme based on a 2D coupled chaotic system and diagonal scrambling algorithm
Jingming Su(苏静明), Shihui Fang(方士辉), Yan Hong(洪炎), and Yan Wen(温言). Chin. Phys. B, 2024, 33(7): 070502.
[3] Remote sensing image encryption algorithm based on novel hyperchaos and an elliptic curve cryptosystem
Jing-Xi Tian(田婧希), Song-Chang Jin(金松昌), Xiao-Qiang Zhang(张晓强), Shao-Wu Yang(杨绍武), and Dian-Xi Shi(史殿习). Chin. Phys. B, 2024, 33(5): 050502.
[4] Two-dimensional-lag complex logistic map with complex parameters and its encryption application
Fangfang Zhang(张芳芳), Jinbo Wu(武金波), Lei Kou(寇磊), Fengying Ma(马凤英), Liming Wu(吴黎明), and Xue Zhang(张雪). Chin. Phys. B, 2024, 33(5): 050505.
[5] Double quantum images encryption scheme based on chaotic system
She-Xiang Jiang(蒋社想), Yang Li(李杨), Jin Shi(石锦), and Ru Zhang(张茹). Chin. Phys. B, 2024, 33(4): 040306.
[6] A lightweight symmetric image encryption cryptosystem in wavelet domain based on an improved sine map
Baichi Chen(陈柏池), Linqing Huang(黄林青), Shuting Cai(蔡述庭), Xiaoming Xiong(熊晓明), and Hui Zhang(张慧). Chin. Phys. B, 2024, 33(3): 030501.
[7] A fractional-order chaotic Lorenz-based chemical system: Dynamic investigation, complexity analysis, chaos synchronization, and its application to secure communication
Haneche Nabil and Hamaizia Tayeb. Chin. Phys. B, 2024, 33(12): 120503.
[8] Sliding-mode-based preassigned-time control of a class of memristor chaotic systems
Jinrong Fan(樊金荣), Qiang Lai(赖强), Qiming Wang(汪其铭), and Leimin Wang(王雷敏). Chin. Phys. B, 2024, 33(11): 110205.
[9] Characteristic analysis of 5D symmetric Hamiltonian conservative hyperchaotic system with hidden multiple stability
Li-Lian Huang(黄丽莲), Yan-Hao Ma(马衍昊), and Chuang Li(李创). Chin. Phys. B, 2024, 33(1): 010503.
[10] Dynamical analysis, geometric control and digital hardware implementation of a complex-valued laser system with a locally active memristor
Yi-Qun Li(李逸群), Jian Liu(刘坚), Chun-Biao Li(李春彪), Zhi-Feng Hao(郝志峰), and Xiao-Tong Zhang(张晓彤). Chin. Phys. B, 2023, 32(8): 080503.
[11] Corrigendum to “The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation andcoexisting attractors”
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2023, 32(6): 069902.
[12] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[13] Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕). Chin. Phys. B, 2023, 32(10): 100503.
[14] Bipolar-growth multi-wing attractors and diverse coexisting attractors in a new memristive chaotic system
Wang-Peng Huang(黄旺鹏) and Qiang Lai(赖强). Chin. Phys. B, 2023, 32(10): 100504.
[15] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
No Suggested Reading articles found!