|
|
|
Adiabatic holonomic quantum computation in decoherence-free subspaces with two-body interaction |
| Xiaoyu Sun(孙晓雨)1, Lei Qiao(乔雷)2,†, and Peizi Zhao(赵培茈)1,‡ |
1 Department of Physics, Shandong University, Jinan 250100, China; 2 Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China |
|
|
|
|
Abstract Adiabatic holonomic gates possess the geometric robustness of adiabatic geometric phases, i.e., dependence only on the evolution path of the parameter space but not on the evolution details of the quantum system, which, when coordinated with decoherence-free subspaces, permits additional resilience to the collective dephasing environment. However, the previous scheme [Phys. Rev. Lett. 95 130501 (2005)] of adiabatic holonomic quantum computation in decoherence-free subspaces requires four-body interaction that is challenging in practical implementation. In this work, we put forward a scheme to realize universal adiabatic holonomic quantum computation in decoherence-free subspaces using only realistically available two-body interaction, thereby avoiding the difficulty of implementing four-body interaction. Furthermore, an arbitrary one-qubit gate in our scheme can be realized by a single-shot implementation, which eliminates the need to combine multiple gates for realizing such a gate.
|
Received: 25 April 2025
Revised: 21 June 2025
Accepted manuscript online: 03 July 2025
|
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
| |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
| |
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12305021). |
Corresponding Authors:
Lei Qiao, Peizi Zhao
E-mail: qiaolei@buaa.edu.cn;pzzhao@sdu.edu.cn
|
Cite this article:
Xiaoyu Sun(孙晓雨), Lei Qiao(乔雷), and Peizi Zhao(赵培茈) Adiabatic holonomic quantum computation in decoherence-free subspaces with two-body interaction 2025 Chin. Phys. B 34 090308
|
[1] Berry M V 1984 Proc. R. Soc. Lond. A 392 45 [2] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111 [3] Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869 [4] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94 [5] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695 [6] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593 [7] Anandan J 1988 Phys. Lett. A 133 171 [8] Wang X B and Matsumoto K 2001 Phys. Rev. Lett. 87 097901 [9] Zhu S L and Wang Z D 2002 Phys. Rev. Lett. 89 097902 [10] Sjöqvist E, Tong D M, Andersson L M, Hessmo B, Johansson M and Singh K 2012 New J. Phys. 14 103035 [11] Xu G F, Zhang J, Tong D M, Sjöqvist E and Kwek L C 2012 Phys. Rev. Lett. 109 170501 [12] Xu G F, Liu C L, Zhao P Z and Tong D M 2015 Phys. Rev. A 92 052302 [13] Sjöqvist E 2016 Phys. Lett. A 380 65 [14] Herterich E and Sjöqvist E 2016 Phys. Rev. A 94 052310 [15] Zhao P Z, Li K Z, Xu G F and Tong D M 2020 Phys. Rev. A 101 062306 [16] Zhao P Z and Tong D M 2023 Phys. Rev. A 108 012619 [17] Xue Z Y, Zhou J and Wang Z D 2015 Phys. Rev. A 92 022320 [18] Wang Y M, Zhang J, Wu C F, You J Q and Romero G 2016 Phys. Rev. A 94 012328 [19] Zhao P Z, Cui X D, Xu G F, Sjöqvist E and Tong D M 2017 Phys. Rev. A 96 052316 [20] Kang Y H, Chen Y H, Shi Z C, Huang B H, Song J and Xia Y 2018 Phys. Rev. A 97 042336 [21] Xu G F, Sjöqvist E and Tong D M 2018 Phys. Rev. A 98 052315 [22] Chen T, Zhang J and Xue Z Y 2018 Phys. Rev. A 98 052314 [23] Zhao P Z, Xu G F and Tong D M 2019 Phys. Rev. A 99 052309 [24] Zhang F H, Zhang J, Gao P and Long G L 2019 Phys. Rev. A 100 012329 [25] Sun L N, Yan L L, Su S L and Jia Y 2021 Phys. Rev. Appl. 16 064040 [26] Xu G F, Zhao P Z, Sjöqvist E and Tong D M 2021 Phys. Rev. A 103 052605 [27] Liang Y, Shen P, Chen T and Xue Z Y 2022 Phys. Rev. Appl. 17 034015 [28] Song P Y, Wei J F, Xu P, Yan L L, Feng M, Su S L and Chen G 2024 Phys. Rev. A 109 022613 [29] Su S L, Wang C, Song P Y and Chen G 2024 Chin. Phys. Lett. 41 040302 [30] Abdumalikov A A, Fink J M, Juliusson K, Pechal M, Berger S,Wallraff A and Filipp S 2013 Nature 496 482 [31] Feng G R, Xu G F and Long G L 2013 Phys. Rev. Lett. 110 190501 [32] Zu C, Wang W B, He L, Zhang W G, Dai C Y, Wang F and Duan L M 2014 Nature 514 72 [33] Arroyo-Camejo S, Lazariev A, Hell SWand Balasubramanian G 2014 Nat. Commun. 5 4870 [34] Zhou B B, Jerger P C, Shkolnikov V O, Heremans F J, Burkard G and Awschalom D D 2017 Phys. Rev. Lett. 119 140503 [35] Sekiguchi Y, Niikura N, Kuroiwa R, Kano H and Kosaka H 2017 Nat. Photonics 11 309 [36] Li H, Liu Y and Long G L 2017 Sci. China Phys. Mech. Astron. 60 080311 [37] Xu Y, Cai W, Ma Y, Mu X, Hu L, Chen T, Wang H, Song Y P, Xue Z Y, Yin Z Q and Sun L 2018 Phys. Rev. Lett. 121 110501 [38] Nagata K, Kuramitani K, Sekiguchi Y and Kosaka H 2018 Nat. Commun. 9 3227 [39] Zhang Z X, Zhao P Z,Wang T H, Xiang L, Jia Z L, Duan P, Tong D M, Yin Y and Guo G P 2019 New J. Phys. 21 073024 [40] Tong D M, Singh K, Kwek L C and Oh C H 2005 Phys. Rev. Lett. 95 110407 [41] Tong D M 2010 Phys. Rev. Lett. 104 120401 [42] Falci G, Fazio R, Palma G M, Siewert J and Vedral V 2000 Nature 407 355 [43] Solinas P, Zanardi P, Zanghi N and Rossi F 2003 Phys. Rev. A 67 062315 [44] Wu H, Gauger E M, George R E, Mottonen M, Riemann H, Abrosimov N V, Becker P, Pohl H, Itoh K M, Thewalt M L W and Morton J J L 2013 Phys. Rev. A 87 032326 [45] Toyoda K, Uchida K, Noguchi A, Haze S and Urabe S 2013 Phys. Rev. A 87 052307 [46] Wu L A, Zanardi P and Lidar D A 2005 Phys. Rev. Lett. 95 130501 [47] Liang Z T, Du Y X, Huang W, Xue Z Y and Yan H 2014 Phys. Rev. A 89 062312 [48] Zhao P Z, Xu G F, Ding Q M, Sjöqvist E and Tong D M 2017 Phys. Rev. A 95 062310 [49] Zhang J, Kwek L C, Sjöqvist E, Tong D M and Zanardi P 2014 Phys. Rev. A 89 042302 [50] Zhao P Z, Wu X and Tong D M 2021 Phys. Rev. A 103 012205 [51] Zhang J, Devitt S J, You J Q and Nori F 2018 Phys. Rev. A 97 022335 [52] Dzyaloshinsky L 1958 J. Phys. Chem. Solids 4 241 [53] Moriya T 1960 Phys. Rev. Lett. 4 228 [54] Sørensen A and Mølmer K 1999 Phys. Rev. Lett. 82 1971 [55] Mølmer K and Sørensen A 1999 Phys. Rev. Lett. 82 1835 [56] Filipp S, Klepp J, Hasegawa Y, Spehr C P, Schmidt U, Geltenbort P and Rauch H 2009 Phys. Rev. Lett. 102 030404 [57] Gasparinetti S, Solinas P and Pekola J P 2011 Phys. Rev. Lett. 107 207002 [58] Huang Y Y, Wu Y K, Wang F, Hou P Y, Wang W B, Zhang W G, Lian W Q, Liu Y Q, Wang H Y, Zhang H Y, He L, Chang X Y, Xu Y and Duan L M 2019 Phys. Rev. Lett. 122 010503 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|