Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 058701    DOI: 10.1088/1674-1056/adbee9
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of palmitoylation on membrane protein partitioning into lipid domains in model cellular membranes

Shishi Wu(吴施施)1,2 and Qing Liang(梁清)1,2,†
1 Department of Physics, Zhejiang Normal University, Jinhua 321004, China;
2 Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
Abstract  The partitioning of membrane proteins into lipid domains in cellular membranes is closely associated with the realization of the protein functions and it is influenced by various factors such as the post-translational modification of palmitoylation. However, the molecular mechanism of the effect of palmitoylation on membrane protein partitioning into the lipid domains remains elusive. In this work, taking human peripheral myelin protein 22 (PMP22) as an example, we employ coarse-grained molecular dynamics simulations to investigate the partitioning of both the natural PMP22 and the palmitoylated PMP22 (pal-PMP22) into the lipid domains of model myelin membranes. The results indicate that palmitoylation drives PMP22 to localize at the boundary of the liquid-ordered (Lo) and liquid-disordered (Ld) domains and increases the possibility of PMP22 partitioning into the Lo domains by changing the hydrophobic length of the proteins and perturbing the ordered packing of tails of the saturated lipids in the Lo domains. This work offers some novel insights into the role of palmitoylation in modulating the function of membrane proteins in cellular membranes.
Keywords:  protein      palmitoylation      lipid domain      molecular simulation  
Received:  31 January 2025      Revised:  05 March 2025      Accepted manuscript online:  11 March 2025
PACS:  87.14.E- (Proteins)  
  87.15.-v (Biomolecules: structure and physical properties)  
  87.16.dt (Structure, static correlations, domains, and rafts)  
  87.15.ap (Molecular dynamics simulation)  
Fund: Project supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ25A040005) and the National Natural Science Foundation of China (Grant No. 11674287).
Corresponding Authors:  Qing Liang     E-mail:  qliang@zjnu.edu.cn

Cite this article: 

Shishi Wu(吴施施) and Qing Liang(梁清) Effects of palmitoylation on membrane protein partitioning into lipid domains in model cellular membranes 2025 Chin. Phys. B 34 058701

[1] Sezgin E, Levental I, Mayor S and Eggeling C 2017 Nat. Rev. Mol. Cell Biol. 18 361
[2] Singer S J and Nicolson G L 1972 Science 175 720
[3] Simons K and Ikonen E 1997 Nature 387 569
[4] Ingólfsson H I, Melo M N, van Eerden F J, Arnarez C, Lopez C A, Wassenaar T A, Periole X, de Vries A H, Tieleman D P and Marrink S J 2014 J. Am. Chem. Soc. 136 14554
[5] Levental I and Lyman E 2023 Nat. Rev. Mol. Cell Biol. 24 107
[6] Goyette J and Gaus K 2017 Curr. Opin. Cell Biol. 44 86
[7] Garcia-Parajo M F, Cambi A, Torreno-Pina J A, Thompson N and Jacobson K 2014 J. Cell Sci. 127 4995
[8] Puff N 2023 Membranes 13 652
[9] Moreno-Pescador G, Arastoo M R, Ruhoff V T, Chiantia S, Daniels R and Bendix P M 2023 Nano Lett. 23 3377
[10] Kusumi A, Fujiwara T K, Tsunoyama T A, Kasai R S, Liu A A, Hirosawa K M, Kinoshita M, Matsumori N, Komura N, Ando H and Suzuki K G N 2020 Traffic 21 106
[11] Lin X and Gorfe A A 2019 J. Phys. Chem. B 123 1009
[12] Lorent J H, Diaz-Rohrer B, Lin X, Spring K, Gorfe A A, Levental K R and Levental I 2017 Nat. Commun. 8 1219
[13] Lin X, Gorfe A A and Levental I 2018 Biophys. J. 114 1936
[14] Balakrishnan M and Kenworthy A K 2024 J. Am. Chem. Soc. 146 1374
[15] Jetten A M and Suteri U 2000 Prog. Nucleic Acid Res. Mol. Biol. 64 97
[16] Snipes G J, Suter U, Welcher A A and Shooter E M 1992 J. Cell Biol. 117 225
[17] Zhou Y, Miles J R, Tavori H, Lin M, Khoshbouei H, Borchelt D R, Bazick H, Landreth G E, Lee S, Fazio S and Notterpek L 2019 J. Neurosci. 39 5404
[18] Stefanski K M, Wilkinson M C and Sanders C R 2024 Biochem. So. Trans. 52 1747
[19] Prior R, Silva A, Vangansewinkel T, et al. 2024 Brain 147 3113
[20] van Paassen B W, van der Kooi A J, van Spaendonck-Zwarts K Y, Verhamme C, Baas F and de Visser M 2014 Orphanet. J. Rare Dis. 9 38
[21] Attarian S, Fatehi F, Rajabally Y A and Pareyson D 2020 J. Neurol. 267 2198
[22] Taioli F, Cabrini I, Cavallaro T, Acler M and Fabrizi G M 2011 Brain 134 608
[23] Li J, Parker B, Martyn C, Natarajan C and Guo J 2013 Mol. Neurobiol. 47 673
[24] Saher G, Brügger B, Lappe-Siefke C, Möbius W, Tozawa R, Wehr M C, Wieland F, Ishibashi S and Nave K A 2005 Nat. Neurosci. 8 468
[25] Gopalakrishnan G, Awasthi A, Belkaid W, De Faria O, Liazoghli D, Colman D R and Dhaunchak A S 2013 J. Neurosci. Res. 91 321
[26] Marinko J T, Kenworthy A K and Sanders C R 2020 Proc. Natl. Acad. Sci. USA 117 14168
[27] Schlebach J P, Narayan M, Alford C, Mittendorf K F, Carter B D, Li J and Sanders C R 2015 J. Am. Chem. Soc. 137 8758
[28] Lee S, Amici S, Tavori H, Zeng W M, Freeland S, Fazio S and Notterpek L 2014 J. Neurosci. 34 16140
[29] Mittendorf K F, Marinko J T, Hampton C M, Ke Z, Hadziselimovic A, Schlebach J P, Law C L, Li J, Wright E R and Sanders C R 2017 Sci. Adv. 3 e1700220
[30] Zoltewicz S J, Lee S, Chittoor V G, Freeland S M, Rangaraju S, Zacharias D A and Notterpek L 2012 ASN Neuro. 4
[31] Li S, Li J, Ning L, Wang S, Niu Y, Jin N, Yao X, Liu H and Xi L 2015 J. Chem. Inf. Model 55 2015
[32] Schlebach J P, Barrett P J, Day C A, Kim J H, Kenworthy A K and Sanders C R 2016 Biochemistry 55 985
[33] Wang T Y, Leventis R and Silvius J R 2001 Biochemistry 40 13031
[34] Uchida K, Obayashi H, Minamihata K, Wakabayashi R, Goto M, Shimokawa N, Takagi M and Kamiya N 2022 Langmuir 38 9640
[35] Marrink S J, Corradi V, Souza P C T, Ingólfsson H I, Tieleman D P and Sansom M S P 2019 Chem. Rev. 119 6184
[36] Marrink S J, Risselada H J, Yefimov S, Tieleman D P and de Vries A H 2007 J. Phys. Chem. B 111 7812
[37] Borges-Araújo L, Borges-Araújo A C, Ozturk T N, Ramirez- Echemendia D P, Fábián B, Carpenter T S, Thallmair S, Barnoud J, Ingólfsson H I, Hummer G, Tieleman D P, Marrink S J, Souza P C T and Melo M N 2023 J. Chem. Theory Comput. 19 7387
[38] Souza P C T, Alessandri R and Barnoud J, et al. 2021 Nat. Methods 18 382
[39] Wu Q Y and Liang Q 2014 Langmuir 30 1116
[40] Lin X, Chen X J and Liang Q 2021 Chin. Phys. B 30 068701
[41] Chen X J and Liang Q 2017 Chin. Phys. B 26 048701
[42] Chen J, Tieleman D P and Liang Q 2022 J. Phys. Chem. Lett. 13 991
[43] de Jong D H, Singh G, Bennett W F, Arnarez C, Wassenaar T A, Schäfer L V, Periole X, Tieleman D P and Marrink S J 2013 J. Chem. Theory Comput. 9 687
[44] Lin X, Chen X J and Liang Q 2021 Chin. Phys. B 30 068701
[45] Chen X J and Liang Q 2017 Chin. Phys. B 26 048701
[46] Jo S, Kim T, Iyer V G and Im W 2008 J. Comput. Chem. 29 1859
[47] Koukos P I, Dehghani-Ghahnaviyeh S, Velez-Vega C, Manchester J, Tieleman D P, Duca J S, Souza P C T and Cournia Z 2023 J. Chem. Theory Comput. 19 8901
[48] Wassenaar T A, Ingólfsson H I, Böckmann R A, Tieleman D P and Marrink S J 2015 J. Chem. Theory Comput. 11 2144
[49] Li W, Lin Z, Yuan B and Yang K 2020 Chin. Phys. B 29 128701
[50] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1 19
[51] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[52] Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684
[53] Park S, YeomMS, Andersen O S, Pastor R W and Im W 2019 J. Chem. Theory Comput. 11 6491
[54] Domański J, Hedger G, Best R B, Stansfeld P J and Sansom M S P 2016 J. Phys. Chem. B 121 3364
[55] Souaile M and Roux B 2001 Comput. Phys. Commun. 135 40
[56] Hub J S, de Groot B L and van der Spoel D 2010 J. Chem. Theory Comput. 6 3713
[57] Efron B 1979 Ann. Statist. 7 1
[58] Zhu F and Hummer G 2012 J. Comput. Chem. 33 453
[59] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph 14 33
[60] Kim T and Im W 2010 Biophys. J. 99 175
[61] Andersen O S and Koeppe R E II 2007 Annu. Rev. Biophys. Biomol. Struct. 36 107
[62] Liang Q, Wu Q Y and Wang Z Y 2014 J. Chem. Phys. 141 074702
[1] Protein aging dynamics: A perspective from non-equilibrium coarse-grained models
Yue Shan(单月), Chun-Lai Ren(任春来), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2025, 34(5): 058301.
[2] Accurate prediction of essential proteins using ensemble machine learning
Dezhi Lu(鲁德志), Hao Wu(吴淏), Yutong Hou(侯俞彤), Yuncheng Wu(吴云成), Yuanyuan Liu(刘媛媛), and Jinwu Wang(王金武). Chin. Phys. B, 2025, 34(1): 018901.
[3] Improving performance of screening MM/PBSA in protein-ligand interactions via machine learning
Yuan-Qiang Chen(陈远强), Yao Xu(徐耀), Yu-Qiang Ma(马余强), and Hong-Ming Ding(丁泓铭). Chin. Phys. B, 2025, 34(1): 018701.
[4] Subtraction of liposome signals in cryo-EM structural determination of protein-liposome complexes
Shouqing Li(李首卿), Ming Li(李明), Yumei Wang(王玉梅), and Xueming Li(李雪明). Chin. Phys. B, 2024, 33(8): 088702.
[5] Mutation in a non-force-bearing region of protein L influences force-dependent unfolding behavior
Huanjie Jiang(蒋环杰), Yanwei Wang(王艳伟), Jiayuan Chen(陈家媛), Dan Hu(胡丹), Hai Pan(潘海), Zilong Guo(郭子龙), and Hu Chen(陈虎). Chin. Phys. B, 2024, 33(7): 078201.
[6] FL-Online: An x-ray crystallographic web-server for atomic-scale structure analysis of biomolecule
Bintang Wang(王宾堂), Tongxin Niu(牛彤欣), Haifu Fan(范海福), and Wei Ding(丁玮). Chin. Phys. B, 2024, 33(7): 076104.
[7] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[8] Recent advances in protein conformation sampling by combining machine learning with molecular simulation
Yiming Tang(唐一鸣), Zhongyuan Yang(杨中元), Yifei Yao(姚逸飞), Yun Zhou(周运), Yuan Tan(谈圆),Zichao Wang(王子超), Tong Pan(潘瞳), Rui Xiong(熊瑞), Junli Sun(孙俊力), and Guanghong Wei(韦广红). Chin. Phys. B, 2024, 33(3): 030701.
[9] Origin of tradeoff between movement velocity and attachment duration of kinesin motor on a microtubule
Yuying Liu(刘玉颖) and Zhiqiang Zhang(张志强). Chin. Phys. B, 2024, 33(2): 028708.
[10] Essential proteins identification method based on four-order distances and subcellular localization information
Pengli Lu(卢鹏丽), Yu Zhong(钟雨), and Peishi Yang(杨培实). Chin. Phys. B, 2024, 33(1): 018903.
[11] Corrigendum to “Peptide backbone-copper ring structure: A molecular insight into copper-induced amyloid toxicity”
Jing Wang(王静), Xiankai Jiang(姜先凯), Xiurong Su(苏秀榕), Xingfei Zhou(周星飞), Yu Wang(王宇), Geng Wang(王耿), Heping Geng(耿和平), Zheng Jiang(姜政), Fang Huang(黄方), Gang Chen(陈刚), Chunlei Wang(王春雷), and Haiping Fang(方海平). Chin. Phys. B, 2023, 32(6): 069901.
[12] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
[13] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[14] Unraveling the molecular mechanism of prion disease: Insights from α2 area mutations in human prion protein
Rongri Tan(谈荣日), Kui Xia(夏奎), Damao Xun(寻大毛), Wenjun Zong(宗文军), and Yousheng Yu(余幼胜). Chin. Phys. B, 2023, 32(12): 128703.
[15] Effect of chaperone-client interaction strength on Hsp70-mediated protein folding
Lujun Zou(邹禄军), Jiajun Lu(陆伽俊), and Xiulian Xu(徐秀莲). Chin. Phys. B, 2023, 32(11): 118701.
No Suggested Reading articles found!