Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 050501    DOI: 10.1088/1674-1056/adbd15
GENERAL Prev   Next  

Effects of potential field delay and coupling delay on collective behavior of a fractional-order coupled system in a dichotomous fluctuating potential

Yangfan Zhong(钟扬帆)1, Xi Chen(陈熙)3, Maokang Luo(罗懋康)1,2, and Tao Yu(蔚涛)1,†
1 College of Mathematics, Sichuan University, Chengdu 610064, China;
2 College of Aeronautics and Astronautics, Sichuan University, Chengdu 610064, China;
3 The 10th Research Institute of China Electronics Technology Group Corporation, Chengdu 610066, China
Abstract  The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated. The power-law memory of the system is characterized using the Caputo fractional derivative operator. Additionally, time delays in the potential field force and coupling force transmission are both considered. Firstly, based on the delay decoupling formula, combined with statistical mean method and the fractional-order Shapiro-Loginov formula, the ``statistic synchronization'' among particles is obtained, revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles. Due to the existence of the coupling delay, the impact of the coupling force on synchronization exhibits non-monotonic, which is different from the previous monotonic effects. Then, two kinds of theoretical expression of output amplitude gains G and G¯ are derived by time-delay decoupling formula and small delay approximation theorem, respectively. Compared to G¯, G is an exact theoretical solution, which means that G is not only more accurate in the region of small delay, but also applies to the region of large delay. Finally, the study of the output amplitude gain G and its resonance behavior are explored. Due to the presence of the potential field delay, a new resonance phenomenon termed ``periodic resonance'' is discovered, which arises from the periodic matching between the potential field delay and the driving frequency. This resonance phenomenon is analyzed qualitatively and quantitatively, uncovering undiscovered characteristics in previous studies.
Keywords:  potential field delay      coupling delay      fractional-order      collective behavior  
Received:  05 December 2024      Revised:  01 February 2025      Accepted manuscript online:  06 March 2025
PACS:  05.10.Gg (Stochastic analysis methods)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: Project supported by the Natural Science Foundation of Sichuan Province, China (Youth Science Foundation) (Grant No. 2022NSFSC1952).
Corresponding Authors:  Tao Yu     E-mail:  scuyutao@163.com

Cite this article: 

Yangfan Zhong(钟扬帆), Xi Chen(陈熙), Maokang Luo(罗懋康), and Tao Yu(蔚涛) Effects of potential field delay and coupling delay on collective behavior of a fractional-order coupled system in a dichotomous fluctuating potential 2025 Chin. Phys. B 34 050501

[1] Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223
[2] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A 14 L453
[3] Stroescu I, Hume D B and Oberthaler M K 2016 Phys. Rev. Lett. 117 243005
[4] Duan F, Pan Y, Chapeau-Blondeau F and Abbott D 2019 IEEE Trans. Signal Process 67 4611
[5] Mcnamara B and Wiesenfeld K 1989 Phys. Rev. A 39 4854
[6] Cubero D 2008 Phys. Rev. E 77 021112
[7] Jian L, Bing H, Fan Y, Chuan L Z and Xiao J D 2020 Commun. Nonlinear Sci. Numer. Simulat. 85 105245
[8] Gammaitoni L, Marchesoni F, Menichella-Saetta E and Santucci S 1994 Phys. Rev. E 49 4878
[9] Li JH 2002 Phys. Rev. E 66 031104
[10] Berdichevsky V and Gitterman M 1996 Europhys Lett. 36 161
[11] Gitterman M 2005 Physica A 352 309
[12] Yu T, Zhang L and Luo M K 2013 Phys. Scr. 88 045008
[13] Nicolis C and Nicolis G 2017 Phys. Rev. E 96 042214
[14] Tu Z, Zhao D Z, Qiu F and Yu T 2020 J. Stat. Phys. 179 247
[15] Jiang L, Lai L, Yu T and Luo M K 2021 Acta Phys. Sin. 70 130501 (in Chinese)
[16] Quintero-Quiroz C and Cosenza M G 2015 Chaos, Solitons and Fractals 71 41
[17] Massihi N, Parastesh F, Towhidkhah F, Huihai W, Shaobo H and Jafari S 2024 Europhys. Lett. 146 21005
[18] Zhong S C, Zhang L, Wang H Q, Ma H and Luo M K 2017 Nonlinear Dyn. 89 1327
[19] Raúl V S 2023 Commun. Nonlinear Sci. Numer. Simulat. 117 106934
[20] Lin L F, He M Y and Wang H Q 2022 Chaos, Solitons and Fractals 154 111641
[21] Liang X M, Tang M, Dhamala M and Liu Z H 2009 Phys. Rev. E 80 066202
[22] Zou W, Senthilkumar D V, Tang Y, Wu Y, Lu J Q and Kurths J 2013 Phys. Rev. E 88 032916
[23] Zhong Y F, Luo M K, Chen X and Yu T 2024 Commun. Nonlinear Sci. Numer. Simulat. 130 107799
[24] Zeitler M, Daffertshofer A and Gie-len CCAM 2009 Phys. Rev. E 79 065203
[25] Majer N and Schöll E 2009 Phys. Rev. E 79 011109
[26] Borromeo M and Marchesoni F 2007 Phys. Rev. E 75 041106
[27] Roxin A, Brunel N and Hansel D 2005 Phys. Rev. Lett. 94 238103
[28] Wang Q Y, Perc M, Duan Z S and Chen G R 2009 Phys. Rev. E 80 026206
[29] Banerjee T, Biswas D and Sarkar BC 2013 Nonlinear Dyn. 71 279
[30] Banerjee T and Biswas D 2013 Nonlinear Dyn. 73 2025
[31] Banerjee T, Biswas D and Sarkar BC 2013 Nonlinear Dyn. 72 321
[32] Wang F, Zhang C and Li L 2023 Commun. Nonlinear Sci. Numer. Simulat. 126 107447
[33] Stamova I, Stamov G and Li XD 2023 Fractal Fract. 7 845
[34] Lin L F, Lin T Z, Zhang R Q and Wang H Q 2023 Chaos, Solitons and Fractals 170 113406
[35] Yu T, Zhang L, Ji YD and Lai L 2019 Commun. Nonlinear Sci. Numer. Simulat. 72 26
[36] Yan Z, Guirao J L G, Saeed T and Liu X B 2022 Nonlinear Dyn. 110 1233
[37] Zhang G C and Li J H 2010 Commun. Theor. Phys. 53 303
[38] Fang Y W, Luo Y and Zeng C 2022 Chaos, Solitons and Fractals 155 111775
[39] He L F 2023 Phys. Scr. 98 035207
[40] Shapiro V E and Loginov V M 1978 Physica A 91 563
[41] Kempfle S, Schafer I and Beyer H 2002 Nonlinear Dyn. 29 99
[42] Guillouzic S, L’Heureux I and Longtin A 1999 Phys. Rev. E 59 3970
[43] Kim C, Lee E K and Talkner P 2006 Phys. Rev. E 73 026101
[1] Simple robot swarm with magnetic coupling connections can collaboratively accomplish collective tasks
Xingyu Ma(马星宇), Chuyun Wang(汪楚云), Jing Wang(王璟), Huaicheng Chen(陈怀城), Gao Wang(王高), and Liyu Liu(刘雳宇). Chin. Phys. B, 2025, 34(6): 068701.
[2] A viscoelastic nonlinear energy sink with an electromagnetic energy harvester: Narrow-band random response
Zhi-Jing Liao(廖志晶), Ya-Hui Sun(孙亚辉), and Yang Liu(刘洋). Chin. Phys. B, 2024, 33(7): 070205.
[3] Turing/Turing-like patterns: Products of random aggregation of spatial components
Jian Gao(高见), Xin Wang(王欣), Xinshuang Liu(刘心爽), and Chuansheng Shen(申传胜). Chin. Phys. B, 2023, 32(7): 070503.
[4] Quasi-synchronization of fractional-order complex networks with random coupling via quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2023, 32(11): 110501.
[5] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[6] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[7] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[8] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[9] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[10] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[11] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[12] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[13] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[14] Coexistence and local Mittag-Leffler stability of fractional-order recurrent neural networks with discontinuous activation functions
Yu-Jiao Huang(黄玉娇), Shi-Jun Chen(陈时俊), Xu-Hua Yang(杨旭华), Jie Xiao(肖杰). Chin. Phys. B, 2019, 28(4): 040701.
[15] Diffusional inhomogeneity in cell cultures
Jia-Zheng Zhang(张佳政), Na Li(李娜), Wei Chen(陈唯). Chin. Phys. B, 2018, 27(2): 028705.
No Suggested Reading articles found!