Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040202    DOI: 10.1088/1674-1056/ada7da
GENERAL Prev   Next  

Trajectory equations of interaction and evolution behaviors of a novel multi-soliton to a (2+1)-dimensional shallow water wave model

Xi-Yu Tan(谭茜宇) and Wei Tan(谭伟)†
College of Mathematics and Statistics, Jishou University, Jishou 416000, China
Abstract  Based on a new bilinear equation, we investigated some new dynamic behaviors of the (2+1)-dimensional shallow water wave model, such as hybridization behavior between different solitons, trajectory equations for lump collisions, and evolution behavior of multi-breathers. Firstly, the N-soliton solution of Ito equation is studied, and some high-order breather waves can be obtained from the N-soliton solutions through paired-complexification of parameters. Secondly, the high-order lump solutions and the hybrid solutions are obtained by employing the long-wave limit method, and the motion velocity and trajectory equations of high-order lump waves are analyzed. Moreover, based on the trajectory equations of the higher-order lump solutions, we give and prove the trajectory theorem of 1-lump before and after interaction with n-soliton. Finally, we obtain some new lump solutions from the multi-solitons by constructing a new test function and using the parameter limit method. Meanwhile, some evolutionary behaviors of the obtained solutions are shown through a large number of three-dimensional graphs with different and appropriate parameters.
Keywords:  Ito equation      trajectory equation      multi-solitons      dynamic behavior  
Received:  10 October 2024      Revised:  06 January 2025      Accepted manuscript online:  09 January 2025
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12461047) and the Scientific Research Project of the Hunan Education Department (Grant No. 24B0478).
Corresponding Authors:  Wei Tan     E-mail:  tanwei1008@126.com

Cite this article: 

Xi-Yu Tan(谭茜宇) and Wei Tan(谭伟) Trajectory equations of interaction and evolution behaviors of a novel multi-soliton to a (2+1)-dimensional shallow water wave model 2025 Chin. Phys. B 34 040202

[1] Si Z Z, Wang Y Y and Dai C Q 2024 Sci. China Phys. Mech. 67 1
[2] Si Z Z, Wang D L, Zhu B W, Ju Z T, Wang X P, Liu W, Malomed B A, Wang Y Y and Dai C Q 2024 Laser Photonics Rev. 18 2400097
[3] Ju Z T, Si Z Z, Xin Y and Dai C Q 2024 Chin. Phys. Lett. 41 084203
[4] AblowitzMJ and Clarkon P A 1991 Solitons, Nonlinear Evolution and Inverse Scattering (Cambridge: Cambridge University Press)
[5] Hirota R and Satsuma J 1981 Phys. Lett. A 85 407
[6] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[7] Gu C H, Hu H S and Zhou Z X 1999 Darboux Transformation in Soliton Theory and Geometric Applications (Shanghai: Shanghai Science and Technology Press)
[8] Matveev V B and Salle M A 1991 Darboux Transformation and Solitons (Springer: Springer series in nonlinear dynamics)
[9] Its A 2003 Notices of the AMS 50 1389
[10] Wang D S and Wang X 2018 Nonlinear Anal. Real World Appl. 41 334
[11] Ma Y L, Wazwaz A M and Li B Q 2023 Phys. Lett. A 488 129132
[12] Feng B F, Ling L M and Takahashi D 2020 Stud. Appl. Math. 142 46
[13] Chen S J, Yin Y H and Lü X 2024 Commun. Nonlinear Sci. Numer. Simulat. 130 107205
[14] Ma Y L, Wazwaz A M and Li B Q 2021 Phys. Lett. A 413 127585
[15] Kai Y, Ji J L and Yin Z X 2022 Phys. Lett. A 421 127780
[16] Yan X Y, Liu J Z and Xin X P 2023 Chin. Phys. B 32 070201
[17] Xia Y R, Zhang K K, Yao R X and Shen Y L 2023 Chin. Phys. B 32 100201
[18] Wang X M, Tan W and Huang J J 2024 Phys. Scr. 99 045201
[19] Ito M 1980 J. Phys. Soc. Jpn. 49 771
[20] Adem A R 2016 Comput. Math. Appl. 71 1248
[21] Zhang X, Wang C and Zhou Y 2021 Phys. Scr. 96 075215
[22] Wang X B, Tian S F and Qin C Y 2017 Appl. Math. Lett. 68 40
[23] Tan W 2021 Int. J. Comput. Math. 98 961
[24] Tian Y and Dai Z 2015 Z. Naturforsch. A 70 437
[25] Yang J Y, Ma W X and Qin Z 2018 Anal. Math. Phys. 8 427
[26] Zou L, Yu Z B and Tian S F 2018 Mod. Phys. Lett. B 32 1850104
[27] Ma W X, Yong X and Zhang H Q 2018 Comput. Math. Appl. 75 289
[28] Wazwaz A M 2022 Nonlinear Dyn. 109 1929
[29] Ilyas M A and Javid A 2023 Optik 293 171405
[30] Tan W, Dai Z D and Dai H P 2017 Therm. Sci. 21 1673
[31] He C H, Tang Y N, Ma W X and Ma J L 2019 Nonlinear Dyn. 95 29
[32] Gong Q K, Wang H and Wang Y H 2024 Chin. Phys. B 33 040505
[33] Tan W, Dai Z D and Xie J L 2018 Comput. Math. Appl. 75 4214
[34] Huang J J, Tan W and Wang X M 2023 Phys. Scr. 98 045226
[35] Akhmediev N N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[36] Zhang Z, Yang X Y, Li W T and Li B 2019 Chin. Phys. B 28 110201
[37] Tan W and Dai Z D 2016 Nonlinear Dyn. 85 817
[38] Tan W 2019 Phys. Lett. A 383 125907
[39] Tan W, Zhang W and Zhang J 2020 Appl. Math. Lett. 101 106063
[1] Localized wave solutions and interactions of the (2+1)-dimensional Hirota—Satsuma—Ito equation
Qiankun Gong(巩乾坤), Hui Wang(王惠), and Yunhu Wang(王云虎). Chin. Phys. B, 2024, 33(4): 040505.
[2] Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(7): 070201.
[3] Trajectory equation of a lump before and after collision with other waves for generalized Hirota-Satsuma-Ito equation
Yarong Xia(夏亚荣), Kaikai Zhang(张开开), Ruoxia Yao(姚若侠), and Yali Shen(申亚丽). Chin. Phys. B, 2023, 32(10): 100201.
[4] Identification of unstable individuals in dynamic networks
Dongli Duan(段东立), Tao Chai(柴涛), Xixi Wu(武茜茜), Chengxing Wu(吴成星), Shubin Si(司书宾), and Genqing Bian(边根庆). Chin. Phys. B, 2021, 30(9): 090501.
[5] Painlevé integrability of the supersymmetric Ito equation
Feng-Jie Cen(岑锋杰), Yan-Dan Zhao(赵燕丹), Shuang-Yun Fang(房霜韵), Huan Meng(孟欢), Jun Yu(俞军). Chin. Phys. B, 2019, 28(9): 090201.
[6] Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional Kadomtsev-Petviashvili equation
Zhao Zhang(张钊), Xiangyu Yang(杨翔宇), Wentao Li(李文涛), Biao Li(李彪). Chin. Phys. B, 2019, 28(11): 110201.
No Suggested Reading articles found!