ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Quantum-state engineering using enhanced tripartite interactions in atom-photon-phonon hybrid systems |
Yaowu Guo(郭耀武)1,2,†, Jiaqiang Zhao(赵加强)1, Lianzhen Cao(曹连振)1, Yingde Li(李英德)1, and Hong-Yan Lu(路红艳)3 |
1 Department of Physics and Electronic Information, Weifang University, Weifang 261061, China; 2 State Key Laboratory of Surface Physics and Laboratory of Advanced Materials, Department of Physics, Fudan University, Shanghai 200433, China; 3 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China |
|
|
Abstract We introduce a hybrid cavity optomechanical model capable of generating significant genuine tripartite interactions and entanglement among coherent degrees of freedom. However, realizing and controlling such tripartite interactions and their entanglement pose crucial challenges that remain largely unexplored. In this work, we predict a tripartite coupling mechanism within a hybrid quantum system consisting of a vibrating mechanical oscillator, a two-level atom and a single-frequency cavity field. We specifically propose a mechanism for tripartite and cross-Kerr nonlinear coupling through displacement and squeezing transformations. By adjusting the optical amplitude of the pump light, we can effectively enhance these nonlinear couplings, facilitating the manipulation of entangled and squeezed states. The resulting tripartite genuine entanglement exhibits distinct evolutionary characteristics. Notably, when the pump light amplitude is large, the tripartite entanglement persists for longer time. Additionally, the phonon displays characteristics of both cooling and squeezing. Our study presents a pathway for exploring and exploiting controllable multipartite entanglement, as well as achieving phonon cooling and squeezing with the assistance of a mesoscopic harmonic oscillator. This work underscores the innovative potential of our model in advancing the field of optomechanics and quantum entanglement.
|
Received: 02 September 2024
Revised: 30 November 2024
Accepted manuscript online: 04 December 2024
|
PACS:
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
62.25.Jk
|
(Mechanical modes of vibration)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12074213), the Natural Science Foundation of Shandong Province (Grant No. ZR2021MA078), and the Research Project of the National Key Laboratory (Grant No. KF2020_04). |
Corresponding Authors:
Yaowu Guo
E-mail: guoyaowu@wfu.edu.cn
|
Cite this article:
Yaowu Guo(郭耀武), Jiaqiang Zhao(赵加强), Lianzhen Cao(曹连振), Yingde Li(李英德), and Hong-Yan Lu(路红艳) Quantum-state engineering using enhanced tripartite interactions in atom-photon-phonon hybrid systems 2025 Chin. Phys. B 34 024203
|
[1] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [2] Aspelmeyer M, Meystre P and Schwab K 2012 Phys. Today 65 29 [3] Meystre P 2013 Ann. Phys. (Berlin) 525 215 [4] Marquardt F and Girvin S M 2009 Physics 2 40 [5] Kippenberg T J and Vahala K J 2008 Science 321 1172 [6] Xiong H, Si L G, Lü X Y, Yang X X and Wu Y 2015 Sci. China Phys. Mech. Astron. 58 1 [7] Sun C P and Li Y 2015 Sci. China Phys. Mech. Astron. 58 1 [8] Kani A, Sarma B and Twamley J 2022 Phys. Rev. Lett. 128 013602 [9] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623 [10] Kurizki G, Bertet P, Kubo Y, Molmer K, Petrosyan D, Rabl P and Schmiedmayer J 2015 Proc. Natl. Acad. Sci. USA 112 3866 [11] Haroche S and Raimond J M 2006 Exploring the Quantum (Oxford Graduate Texts, Oxford) [12] Walther H, Varcoe B T, Englert B G and Becker T 2006 Rep. Prog. Phys. 69 1325 [13] LaHaye M D, Suh J, Echternach P M, Schwab K C and Roukes M L 2009 Nature 459 960 [14] O’Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M and Cleland A N 2010 Nature 464 697 [15] Li P B, Zhou Y, GaoWB and Nori F 2020 Phys. Rev. Lett. 125 153602 [16] Restrepo J, Ciuti C and Favero I 2014 Phys. Rev. Lett. 112 013601 [17] Sete E A and Eleuch H 2014 Phys. Rev. A 89 013841 [18] Wang H, Gu X, Liu Y, Miranowicz A and Nori F 2014 Phys. Rev. A 90 023817 [19] Holz T, Betzholz R and Bienert M 2015 Phys. Rev. A 92 043822 [20] C ernotík O and Hammerer K 2016 Phys. Rev. A 94 012340 [21] Genes C, Vitali D and Tombesi P 2008 Phys. Rev. A 77 050307 [22] Genes C, Ritsch H, Drewsen M and Dantan A 2011 Phys. Rev. A 84 051801 [23] Dantan A, Nair B, Pupillo G and Genes C 2014 Phys. Rev. A 90 033820 [24] Carmele A, Vogell B, Stannigel K and Zoller P 2014 New J. Phys. 16 063042 [25] Nie W, Chen A, Lan Y, Liao Q and Zhu S 2016 J. Phys. B: At. Mol. Opt. Phys. 49 025501 [26] Hei X L, Li P B, Pan X F and Nori F 2023 Phys. Rev. Lett. 130 073602 [27] Restrepo J, Favero I and Ciuti C 2017 Phys. Rev. A 95 023832 [28] Zou F, Fan L B, Huang J F and Liao J Q 2019 Phys. Rev. A 99 043837 [29] Liao J Q, Huang J F, Tian L, Kuang L M and Sun C P 2020 Phys. Rev. A 101 063802 [30] Wang Y M, Zhang G Q and YouWL 2018 Laser Phys. Lett. 15 105201 [31] Yang J Y, Yang Z, Zhao C S, Peng R, Chao S L and Zhou L 2021 Opt. Express 29 36167 [32] Bhattacharya M, Uys H and Meystre P 2008 Phys. Rev. A 77 033819 [33] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin SMand Harris J G E 2008 Nature 452 72 [34] Sankey J C, Yang C, Zwickl B M, Jayich A M and Harris J G E 2010 Nat. Phys. 6 707 [35] Li G, Nie W, Li X, Li M, Chen A and Lan Y 2019 Sci. China Phys. Mech. Astron. 62 100311 [36] Bowen W P and Milburn G J 2015 Quantum Optomechanics (CRC Press) [37] Xuereb A, Barbieri M and Paternostro M 2012 Phys. Rev. A 86 013809 [38] Yang X H, Ling Y, Shao X P and Xiao M 2017 Phys. Rev. A 95 052303 [39] Wang Y D, Chesi S and Clerk A A 2015 Phys. Rev. A 91 013807 [40] Jiang C, Tserkis S, Collins K, Onoe S, Li Y and Tian L 2020 Phys. Rev. A 101 042320 [41] Xiang Y, Sun F X, Wang M, Gong Q H and He Q Y 2015 Opt. Express 23 30104 [42] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601 [43] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin SMand Harris J G E 2008 Nature 452 72 [44] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89 [45] See Appendix for more details. [46] Allen L and Eberly J H 1975 Optical Resonance and Two-level Atoms (New York: Wiley) [47] Sankey J C, Yang C, Zwickl B M, et al. 2010 Nat. Phys. 6 707 [48] Lü X Y, Zheng L L, Zhu G L andWu Y 2018 Phys. Rev. Appl. 9 064006 [49] Zhang Z C and Wang X G 2020 Opt. Express 28 2732 [50] Polkovnikov A, Sengupta K, Silva A, et al. 2011 Rev. Mod. Phys. 83 863 [51] Sabiín C and García-Alcaine G 2008 Eur. Phys. J. D 48 435 [52] Roukes M 2001 Phys. World 14 25 [53] Stannigel K, Rabl P, Sørensen A S, Zoller P and LukinMD 2010 Phys. Rev. Lett. 105 220501 [54] Heinrich G, Ludwig M, Qian J, Kubala B and Marquardt F 2011 Phys. Rev. Lett. 107 043603 [55] Lassen M, Delaubert V, Janousek J, Wagner K, Bachor H A, Lam P K, Treps N, Buchhave P, Fabre C and Harb C C 2007 Phys. Rev. Lett. 98 083602 [56] Massel F, Heikkilä T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J and Sillanpää M A 2011 Nature 480 351 [57] Xu X W, Zhao Y J and Liu Y X 2013 Phys. Rev. A 88 022325 [58] Seok H, Buchmann L F, Singh S and Meystre P 2012 Phys. Rev. A 86 063829 [59] Ludwig M and Marquardt F 2013 Phys. Rev. Lett. 111 073603 [60] Ludwig M, Hammerer K and Marquardt F 2010 Phys. Rev. A 82 012333 [61] Xuereb A, Genes C and Dantan A 2013 Phys. Rev. A 88 053803 [62] Tomadin A, Diehl S, Lukin M D, Rabl P and Zoller P 2012 Phys. Rev. A 86 033821 [63] Eberle T, Steinlechner S, Bauchrowitz J, Handchen V, Vahlbruch H, Mehmet M, Muller-Ebhardt H and Schnabel R 2010 Phys. Rev. Lett. 104 251102 [64] Khalili F Y and Braginski V 1995 Quantum Measurement (Cambridge: Cambridge University) [65] Hoff U B, Harris G I, Madsen L S, Kerdoncuff H, Lassen M, Nielsen B M, Bowen W P and Andersen U L 2013 Opt. Lett. 38 1413 [66] Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A and Bowen W P 2013 Nat. Photonics 7 229 [67] Sete E A and Eleuch H 2010 Phys. Rev. A 82 043810 [68] Zhang Z C, Wang Y P, Yu Y F and Zhang Z M 2018 Opt. Express 26 11915 [69] Purdy T P, Brooks D W C, Botter T, Brahms N, Ma Z Y and Stamper- Kurn D M 2010 Phys. Rev. Lett. 105 133602 [70] Bullier N P, Pontin A and Barker P F 2021 Phys. Rev. Research 3 L032022 [71] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin SMand Harris J G E 2008 Nature 452 72 [72] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin SMand Harris J G E 2008 Nature 452 72 [73] Sankey J C, Yang C, Zwickl B M, Jayich A M and Harris J G E 2010 Nat. Phys. 6 707 [74] Flowers-Jacobs N E, Hoch S W, Sankey J C, Kashkanova A, Jayich A M, Deutsch C, Reichel J and Harris J G E 2012 Appl. Phys. Lett. 101 221109 [75] Li H K, Liu Y C, Yi X, Zou C L, Ren X X and Xiao Y F 2012 Phys. Rev. A 85 053832 [76] Zhang J S, Li M C and Chen A X 2019 Phys. Rev. A 99 013843 [77] Ma J L, Li Q and Tan L 2021 Eur. Phys. J. D 75 262 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|