Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 127302    DOI: 10.1088/1674-1056/ad8db4
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

A universal resist-assisted metal transfer method for 2D semiconductor contacts

Xuanye Liu(刘轩冶)1,2,†, Linxuan Li(李林璇)2,†, Chijun Wei(尉驰俊)2, Peng Song(宋鹏)1,2, Hui Gao(高辉)1,2, Kang Wu(吴康)1,2, Nuertai Jiazila(努尔泰cdot加孜拉)1,2, Jiequn Sun(孙杰群)1,2, Hui Guo(郭辉)1,2,3, Haitao Yang(杨海涛)1,2,3, Wu Zhou(周武)2,‡, Lihong Bao(鲍丽宏)1,2,3,§, and Hong-Jun Gao(高鸿钧)1,2,3
1 Institute of physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Hefei National Laboratory, Hefei 230088, China
Abstract  With the explosive exploration of two-dimensional (2D) semiconductors for device applications, ensuring effective electrical contacts has become critical for optimizing device performance. Here, we demonstrate a universal resist-assisted metal transfer method for creating nearly free-standing metal electrodes on the SiO$_{2}$/Si substrate, which can be easily transferred onto 2D semiconductors to form van der Waals (vdW) contacts. In this method, polymethyl methacrylate (PMMA) serves both as an electron resist for electrode patterning and as a sacrificial layer. Contacted with our transferred electrodes, MoS$_{2}$ exhibits tunable Schottky barrier heights and a transition from n-type dominated to ambipolar conduction with increasing metal work functions, while InSe shows pronounced ambipolarity. Additionally, using $\alpha$-In$_{2}$Se$_{3}$ as an example, we demonstrate that our transferred electrodes enhance resistance switching in ferroelectric memristors. Finally, the universality of our method is evidenced by the successful transfer of various metals with different adhesion forces and complex patterns.
Keywords:  metal electrode transfer      2D materials      Schottky barrier      ambipolar      memristor  
Received:  26 September 2024      Revised:  31 October 2024      Accepted manuscript online:  01 November 2024
PACS:  73.40.Ns (Metal-nonmetal contacts)  
  72.20.Fr (Low-field transport and mobility; piezoresistance)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: This work was supported by the National Key Research & Development Project of China (Grant No. 2022YFA1204100), the National Natural Science Foundation of China (Grant No. 62488201), Strategic Priority Research Program of Chinese Academy of Sciences (CAS, Grant Nos. XDB30000000 and XDB28000000), CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003), the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700), and Beijing Outstanding Young Scientist Program (Grant No. BJJWZYJH01201914430039).
Corresponding Authors:  Wu Zhou, Lihong Bao     E-mail:  wuzhou@ucas.ac.cn;lhbao@iphy.ac.cn

Cite this article: 

Xuanye Liu(刘轩冶), Linxuan Li(李林璇), Chijun Wei(尉驰俊), Peng Song(宋鹏), Hui Gao(高辉), Kang Wu(吴康), Nuertai Jiazila(努尔泰cdot加孜拉), Jiequn Sun(孙杰群), Hui Guo(郭辉), Haitao Yang(杨海涛), Wu Zhou(周武), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧) A universal resist-assisted metal transfer method for 2D semiconductor contacts 2024 Chin. Phys. B 33 127302

[1] Nikonov D E and Young I A 2015 IEEE J. Explor. Solid-State Comput. Devices Circuits 1 3
[2] Li W, Shen H, Qiu H, Shi Y and Wang X 2024 Natl. Sci. Rev. 11 nwae001
[3] O’Brien K P, Naylor C H, Dorow C, Maxey K, Penumatcha A V, Vyatskikh A, Zhong T, Kitamura A, Lee S, Rogan C, Mortelmans W, Kavrik M S, Steinhardt R, Buragohain P, Dutta S, Tronic T, Clendenning S, Fischer P, Putna E S, Radosavljevic M, Metz M and Avci U 2023 Nat. Commun. 14 6400
[4] Zeng S, Liu C and Zhou P 2024 Nat. Rev. Electr. Eng. 1 335
[5] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[6] Jiang J, Xu L, Qiu C and Peng L M 2023 Nature 616 470
[7] Wu L,Wang A, Shi J, Yan J, Zhou Z, Bian C, Ma J, Ma R, Liu H, Chen J, Huang Y, Zhou W, Bao L, Ouyang M, Pennycook S J, Pantelides S T and Gao H J 2021 Nat. Nanotechnol. 16 882
[8] Wang H, Guo H, Guzman R, JiaziLa N, Wu K, Wang A, Liu X, Liu L, Wu L, Chen J, Huan Q, Zhou W, Yang H, Pantelides S T, Bao L and Gao H J 2024 Adv. Mater. 36 2311652
[9] Wang H, Bao L, Guzman R, Wu K, Wang A, Liu L, Wu L, Chen J, Huan Q, Zhou W, Pantelides S T and Gao H J 2023 Adv. Mater. 35 2301067
[10] Migliato Marega G, Zhao Y, Avsar A, Wang Z, Tripathi M, Radenovic A and Kis A 2020 Nature 587 72
[11] Siyuan W, Li Y, Li W, Mao X, Wang C, Chen C, Dong J, Nie A, Xiang J, Liu Z, Zhu W and Zeng H 2019 Adv. Funct. Mater. 29 1808606
[12] Zheng C, Yu L, Zhu L, Collins J L, Kim D, Lou Y, Xu C, Li M, Wei Z, Zhang Y, Edmonds M T, Li S, Seidel J, Zhu Y, Liu J Z, Tang W X and Fuhrer M S 2018 Sci. Adv. 4 eaar7720
[13] Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H and Lai K 2017 Nano Lett. 17 5508
[14] Xue F, He X, Retamal J R D, Han A, Zhang J, Liu Z, Huang J K, Hu W, Tung V, He J H, Li L J and Zhang X 2019 Adv. Mater. 31 1901300
[15] Liu K, Zhang T, Dang B, Bao L, Xu L, Cheng C, Yang Z, Huang R and Yang Y 2022 Nat. Electron. 5 761
[16] Si M, Zhang Z, Chang S C, Haratipour N, Zheng D, Li J, Avci U E and Ye P D 2021 ACS Nano 15 5689
[17] Sun Y, Wang S, Chen X, Zhang Z and Zhou P 2022 Adv. Intell. Syst. 4 2100198
[18] Xue F, He X, Wang Z, Retamal J R D, Chai Z, Jing L, Zhang C, Fang H, Chai Y, Jiang T, Zhang W, Alshareef H N, Ji Z, Li L J, He J H and Zhang X 2021 Adv. Mater. 33 2008709
[19] Schulman D S, Arnold A J and Das S 2018 Chem. Soc. Rev. 47 3037
[20] Ghani M A, Sarkar S, Lee J I, Zhu Y, Yan H, Wang Y and Chhowalla M 2024 ACS Appl. Mater. Interfaces 16 7399
[21] Allain A, Kang J, Banerjee K and Kis A 2015 Nat. Mater. 14 1195
[22] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696
[23] Zhang X, Huang C, Li Z, Fu J, Tian J, Ouyang Z, Yang Y, Shao X, Han Y, Qiao Z and Zeng H 2024 Nat. Commun. 15 4619
[24] Jung Y, Choi M S, Nipane A, Borah A, Kim B, Zangiabadi A, Taniguchi T, Watanabe K, Yoo W J, Hone J and Teherani J T 2019 Nat. Electron. 2 187
[25] Fang H, Chuang S, Chang T C, Takei K, Takahashi T and Javey A 2012 Nano Lett. 12 3788
[26] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Nat. Mater. 13 1128
[27] Yu J, Wang H, Zhuge F, Chen Z, Hu M, Xu X, He Y, Ma Y, Miao X and Zhai T 2023 Nat. Commun. 14 5662
[28] Shen P C, Su C, Lin Y, Chou A S, Cheng C C, Park J H, Chiu M H, Lu A Y, Tang H L, Tavakoli M M, Pitner G, Ji X, Cai Z, Mao N, Wang J, Tung V, Li J, Bokor J, Zettl A, Wu C I, Palacios T, Li L J and Kong J 2021 Nature 593 211
[29] Li W, Gong X, Yu Z, Ma L, Sun W, Gao S, Koroglu C, Wang W, Liu L, Li T, Ning H, Fan D, Xu Y, Tu X, Xu T, Sun L, Wang W, Lu J, Ni Z, Li J, Duan X, Wang P, Nie Y, Qiu H, Shi Y, Pop E, Wang J and Wang X 2023 Nature 613 274
[30] Liu G, Tian Z, Yang Z, Xue Z, Zhang M, Hu X, Wang Y, Yang Y, Chu P K, Mei Y, Liao L, Hu W and Di Z 2022 Nat. Electron. 5 275
[31] Wu Y, Xin Z, Zhang Z, Wang B, Peng R, Wang E, Shi R, Liu Y, Guo J, Liu K and Liu K 2023 Adv. Mater. 35 2210735
[32] Qi D, Li P, Ou H,Wu D, LianW,Wang Z, Ouyang F, Chai Y and Zhang W 2023 Adv. Funct. Mater. 33 2301704
[33] Hu S, Luo X, Xu J, Zhao Q, Cheng Y, Wang T, Jie W, Castellanos- Gomez A, Gan X and Zhao J 2022 Adv. Electron. Mater. 8 2101176
[34] Hong M, Zhang X, Geng Y, Wang Y, Wei X, Gao L, Yu H, Cao Z, Zhang Z and Zhang Y 2023 InfoMat 6 e12491
[35] Liang Q, Luo X Y, Wang Y X, Liang Y C and Xie Q 2022 Chin. Phys. B 31 087101
[36] Ma L, Wang Y and Liu Y 2024 Chem. Rev. 124 2583
[37] Wu L, Shi J, Zhou Z, Yan J,Wang A, Bian C, Ma J, Ma R, Liu H, Chen J, Huang Y, Zhou W, Bao L, Ouyang M, Pantelides S T and Gao H J 2020 Nano Res. 13 1127
[38] Ryou J, Kim Y S, Kc S and Cho K 2016 Sci. Rep. 6 29184
[39] Qin B, Ma C, Guo Q, Li X, Wei W, Ma C, Wang Q, Liu F, Zhao M, Xue G, Qi J, Wu M, Hong H, Du L, Zhao Q, Gao P, Wang X, Wang E, Zhang G, Liu C and Liu K 2024 Science 385 99
[40] Pasquale G, Lopriore E, Sun Z, Cernevics K, Tagarelli F, Watanabe K, Taniguchi T, Yazyev O V and Kis A 2023 Nat. Nanotechnol. 18 1416
[41] Zhang Y, Chen X, Zhang M, Wu X, Wang J, Tian R, Fang L, Zhang Y, Zhao J and Gan X 2024 Adv. Funct. Mater. 34 2402957
[42] Chen Y, Zhang M, Li D, Tang Y, Ren H, Li J, Liang K, Wang Y, Wen L, Li W, Kong W, Liu S, Wang H, Wang D and Zhu B 2023 ACS Nano 17 12499
[43] Zhang Y, Wang L, Chen H, Ma T, Lu X and Loh K P 2021 Advanced Electronic Materials 7 2100609
[44] Xue F, He X, Ma Y, Zheng D, Zhang C, Li L J, He J H, Yu B and Zhang X 2021 Nat. Commun. 12 7291
[45] Zhou J, Fei P, Gu Y, MaiW, Gao Y, Yang R, Bao G andWang Z L 2008 Nano Lett. 8 3973
[1] A physical memristor model for Pavlovian associative memory
Jiale Lu(卢家乐), Haofeng Ran(冉皓丰), Dirui Xie(谢頔睿), Guangong Zhou(周广东), and Xiaofang Hu(胡小方). Chin. Phys. B, 2025, 34(1): 018703.
[2] Gate-tunable high-responsivity photodiode based on 2D ambipolar semiconductor
Wentao Yu(于文韬), Long Zhao(赵龙), Yanfei Gao(高延飞), Shiping Gao(高石平), Yuekun Yang(杨悦昆), Chen Pan(潘晨), Shi-Jun Liang(梁世军), and Bin Cheng(程斌). Chin. Phys. B, 2025, 34(1): 018502.
[3] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[4] Event-based nonfragile state estimation for memristive recurrent neural networks with stochastic cyber-attacks and sensor saturations
Xiao-Guang Shao(邵晓光), Jie Zhang(张捷), and Yan-Juan Lu(鲁延娟). Chin. Phys. B, 2024, 33(7): 070203.
[5] One memristor-one electrolyte-gated transistor-based high energy-efficient dropout neuronal units
Yalin Li(李亚霖), Kailu Shi(时凯璐), Yixin Zhu(朱一新), Xiao Fang(方晓), Hangyuan Cui(崔航源), Qing Wan(万青), and Changjin Wan(万昌锦). Chin. Phys. B, 2024, 33(6): 068401.
[6] Fractional-order heterogeneous memristive Rulkov neuronal network and its medical image watermarking application
Dawei Ding(丁大为), Yan Niu(牛炎), Hongwei Zhang(张红伟), Zongli Yang(杨宗立), Jin Wang(王金), Wei Wang(王威), and Mouyuan Wang(王谋媛). Chin. Phys. B, 2024, 33(5): 050503.
[7] Dynamics and synchronization of neural models with memristive membranes under energy coupling
Jingyue Wan(万婧玥), Fuqiang Wu(吴富强), Jun Ma(马军), and Wenshuai Wang(汪文帅). Chin. Phys. B, 2024, 33(5): 050504.
[8] Dynamical behaviors in discrete memristor-coupled small-world neuronal networks
Jieyu Lu(鲁婕妤), Xiaohua Xie(谢小华), Yaping Lu(卢亚平), Yalian Wu(吴亚联), Chunlai Li(李春来), and Minglin Ma(马铭磷). Chin. Phys. B, 2024, 33(4): 048701.
[9] Dynamics analysis and cryptographic implementation of a fractional-order memristive cellular neural network model
Xinwei Zhou(周新卫), Donghua Jiang(蒋东华), Jean De Dieu Nkapkop, Musheer Ahmad, Jules Tagne Fossi, Nestor Tsafack, and Jianhua Wu(吴建华). Chin. Phys. B, 2024, 33(4): 040506.
[10] Coexistence behavior of asymmetric attractors in hyperbolic-type memristive Hopfield neural network and its application in image encryption
Xiaoxia Li(李晓霞), Qianqian He(何倩倩), Tianyi Yu(余天意),Zhuang Cai(才壮), and Guizhi Xu(徐桂芝). Chin. Phys. B, 2024, 33(3): 030505.
[11] Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk
Minglin Ma(马铭磷), Kangling Xiong(熊康灵), Zhijun Li(李志军), and Shaobo He(贺少波). Chin. Phys. B, 2024, 33(2): 028706.
[12] Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise
Xun Yan(晏询), Zhijun Li(李志军), and Chunlai Li(李春来). Chin. Phys. B, 2024, 33(2): 028705.
[13] Sliding-mode-based preassigned-time control of a class of memristor chaotic systems
Jinrong Fan(樊金荣), Qiang Lai(赖强), Qiming Wang(汪其铭), and Leimin Wang(王雷敏). Chin. Phys. B, 2024, 33(11): 110205.
[14] Memristors-coupled neuron models with multiple firing patterns and homogeneous and heterogeneous multistability
Xuan Wang(王暄), Santo Banerjee, Yinghong Cao(曹颖鸿), and Jun Mou(牟俊). Chin. Phys. B, 2024, 33(10): 100501.
[15] Dynamical analysis, geometric control and digital hardware implementation of a complex-valued laser system with a locally active memristor
Yi-Qun Li(李逸群), Jian Liu(刘坚), Chun-Biao Li(李春彪), Zhi-Feng Hao(郝志峰), and Xiao-Tong Zhang(张晓彤). Chin. Phys. B, 2023, 32(8): 080503.
No Suggested Reading articles found!