SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS |
Prev
Next
|
|
|
A universal resist-assisted metal transfer method for 2D semiconductor contacts |
Xuanye Liu(刘轩冶)1,2,†, Linxuan Li(李林璇)2,†, Chijun Wei(尉驰俊)2, Peng Song(宋鹏)1,2, Hui Gao(高辉)1,2, Kang Wu(吴康)1,2, Nuertai Jiazila(努尔泰cdot加孜拉)1,2, Jiequn Sun(孙杰群)1,2, Hui Guo(郭辉)1,2,3, Haitao Yang(杨海涛)1,2,3, Wu Zhou(周武)2,‡, Lihong Bao(鲍丽宏)1,2,3,§, and Hong-Jun Gao(高鸿钧)1,2,3 |
1 Institute of physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Hefei National Laboratory, Hefei 230088, China |
|
|
Abstract With the explosive exploration of two-dimensional (2D) semiconductors for device applications, ensuring effective electrical contacts has become critical for optimizing device performance. Here, we demonstrate a universal resist-assisted metal transfer method for creating nearly free-standing metal electrodes on the SiO$_{2}$/Si substrate, which can be easily transferred onto 2D semiconductors to form van der Waals (vdW) contacts. In this method, polymethyl methacrylate (PMMA) serves both as an electron resist for electrode patterning and as a sacrificial layer. Contacted with our transferred electrodes, MoS$_{2}$ exhibits tunable Schottky barrier heights and a transition from n-type dominated to ambipolar conduction with increasing metal work functions, while InSe shows pronounced ambipolarity. Additionally, using $\alpha$-In$_{2}$Se$_{3}$ as an example, we demonstrate that our transferred electrodes enhance resistance switching in ferroelectric memristors. Finally, the universality of our method is evidenced by the successful transfer of various metals with different adhesion forces and complex patterns.
|
Received: 26 September 2024
Revised: 31 October 2024
Accepted manuscript online: 01 November 2024
|
PACS:
|
73.40.Ns
|
(Metal-nonmetal contacts)
|
|
72.20.Fr
|
(Low-field transport and mobility; piezoresistance)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
Fund: This work was supported by the National Key Research & Development Project of China (Grant No. 2022YFA1204100), the National Natural Science Foundation of China (Grant No. 62488201), Strategic Priority Research Program of Chinese Academy of Sciences (CAS, Grant Nos. XDB30000000 and XDB28000000), CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003), the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700), and Beijing Outstanding Young Scientist Program (Grant No. BJJWZYJH01201914430039). |
Corresponding Authors:
Wu Zhou, Lihong Bao
E-mail: wuzhou@ucas.ac.cn;lhbao@iphy.ac.cn
|
Cite this article:
Xuanye Liu(刘轩冶), Linxuan Li(李林璇), Chijun Wei(尉驰俊), Peng Song(宋鹏), Hui Gao(高辉), Kang Wu(吴康), Nuertai Jiazila(努尔泰cdot加孜拉), Jiequn Sun(孙杰群), Hui Guo(郭辉), Haitao Yang(杨海涛), Wu Zhou(周武), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧) A universal resist-assisted metal transfer method for 2D semiconductor contacts 2024 Chin. Phys. B 33 127302
|
[1] Nikonov D E and Young I A 2015 IEEE J. Explor. Solid-State Comput. Devices Circuits 1 3 [2] Li W, Shen H, Qiu H, Shi Y and Wang X 2024 Natl. Sci. Rev. 11 nwae001 [3] O’Brien K P, Naylor C H, Dorow C, Maxey K, Penumatcha A V, Vyatskikh A, Zhong T, Kitamura A, Lee S, Rogan C, Mortelmans W, Kavrik M S, Steinhardt R, Buragohain P, Dutta S, Tronic T, Clendenning S, Fischer P, Putna E S, Radosavljevic M, Metz M and Avci U 2023 Nat. Commun. 14 6400 [4] Zeng S, Liu C and Zhou P 2024 Nat. Rev. Electr. Eng. 1 335 [5] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [6] Jiang J, Xu L, Qiu C and Peng L M 2023 Nature 616 470 [7] Wu L,Wang A, Shi J, Yan J, Zhou Z, Bian C, Ma J, Ma R, Liu H, Chen J, Huang Y, Zhou W, Bao L, Ouyang M, Pennycook S J, Pantelides S T and Gao H J 2021 Nat. Nanotechnol. 16 882 [8] Wang H, Guo H, Guzman R, JiaziLa N, Wu K, Wang A, Liu X, Liu L, Wu L, Chen J, Huan Q, Zhou W, Yang H, Pantelides S T, Bao L and Gao H J 2024 Adv. Mater. 36 2311652 [9] Wang H, Bao L, Guzman R, Wu K, Wang A, Liu L, Wu L, Chen J, Huan Q, Zhou W, Pantelides S T and Gao H J 2023 Adv. Mater. 35 2301067 [10] Migliato Marega G, Zhao Y, Avsar A, Wang Z, Tripathi M, Radenovic A and Kis A 2020 Nature 587 72 [11] Siyuan W, Li Y, Li W, Mao X, Wang C, Chen C, Dong J, Nie A, Xiang J, Liu Z, Zhu W and Zeng H 2019 Adv. Funct. Mater. 29 1808606 [12] Zheng C, Yu L, Zhu L, Collins J L, Kim D, Lou Y, Xu C, Li M, Wei Z, Zhang Y, Edmonds M T, Li S, Seidel J, Zhu Y, Liu J Z, Tang W X and Fuhrer M S 2018 Sci. Adv. 4 eaar7720 [13] Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H and Lai K 2017 Nano Lett. 17 5508 [14] Xue F, He X, Retamal J R D, Han A, Zhang J, Liu Z, Huang J K, Hu W, Tung V, He J H, Li L J and Zhang X 2019 Adv. Mater. 31 1901300 [15] Liu K, Zhang T, Dang B, Bao L, Xu L, Cheng C, Yang Z, Huang R and Yang Y 2022 Nat. Electron. 5 761 [16] Si M, Zhang Z, Chang S C, Haratipour N, Zheng D, Li J, Avci U E and Ye P D 2021 ACS Nano 15 5689 [17] Sun Y, Wang S, Chen X, Zhang Z and Zhou P 2022 Adv. Intell. Syst. 4 2100198 [18] Xue F, He X, Wang Z, Retamal J R D, Chai Z, Jing L, Zhang C, Fang H, Chai Y, Jiang T, Zhang W, Alshareef H N, Ji Z, Li L J, He J H and Zhang X 2021 Adv. Mater. 33 2008709 [19] Schulman D S, Arnold A J and Das S 2018 Chem. Soc. Rev. 47 3037 [20] Ghani M A, Sarkar S, Lee J I, Zhu Y, Yan H, Wang Y and Chhowalla M 2024 ACS Appl. Mater. Interfaces 16 7399 [21] Allain A, Kang J, Banerjee K and Kis A 2015 Nat. Mater. 14 1195 [22] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696 [23] Zhang X, Huang C, Li Z, Fu J, Tian J, Ouyang Z, Yang Y, Shao X, Han Y, Qiao Z and Zeng H 2024 Nat. Commun. 15 4619 [24] Jung Y, Choi M S, Nipane A, Borah A, Kim B, Zangiabadi A, Taniguchi T, Watanabe K, Yoo W J, Hone J and Teherani J T 2019 Nat. Electron. 2 187 [25] Fang H, Chuang S, Chang T C, Takei K, Takahashi T and Javey A 2012 Nano Lett. 12 3788 [26] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Nat. Mater. 13 1128 [27] Yu J, Wang H, Zhuge F, Chen Z, Hu M, Xu X, He Y, Ma Y, Miao X and Zhai T 2023 Nat. Commun. 14 5662 [28] Shen P C, Su C, Lin Y, Chou A S, Cheng C C, Park J H, Chiu M H, Lu A Y, Tang H L, Tavakoli M M, Pitner G, Ji X, Cai Z, Mao N, Wang J, Tung V, Li J, Bokor J, Zettl A, Wu C I, Palacios T, Li L J and Kong J 2021 Nature 593 211 [29] Li W, Gong X, Yu Z, Ma L, Sun W, Gao S, Koroglu C, Wang W, Liu L, Li T, Ning H, Fan D, Xu Y, Tu X, Xu T, Sun L, Wang W, Lu J, Ni Z, Li J, Duan X, Wang P, Nie Y, Qiu H, Shi Y, Pop E, Wang J and Wang X 2023 Nature 613 274 [30] Liu G, Tian Z, Yang Z, Xue Z, Zhang M, Hu X, Wang Y, Yang Y, Chu P K, Mei Y, Liao L, Hu W and Di Z 2022 Nat. Electron. 5 275 [31] Wu Y, Xin Z, Zhang Z, Wang B, Peng R, Wang E, Shi R, Liu Y, Guo J, Liu K and Liu K 2023 Adv. Mater. 35 2210735 [32] Qi D, Li P, Ou H,Wu D, LianW,Wang Z, Ouyang F, Chai Y and Zhang W 2023 Adv. Funct. Mater. 33 2301704 [33] Hu S, Luo X, Xu J, Zhao Q, Cheng Y, Wang T, Jie W, Castellanos- Gomez A, Gan X and Zhao J 2022 Adv. Electron. Mater. 8 2101176 [34] Hong M, Zhang X, Geng Y, Wang Y, Wei X, Gao L, Yu H, Cao Z, Zhang Z and Zhang Y 2023 InfoMat 6 e12491 [35] Liang Q, Luo X Y, Wang Y X, Liang Y C and Xie Q 2022 Chin. Phys. B 31 087101 [36] Ma L, Wang Y and Liu Y 2024 Chem. Rev. 124 2583 [37] Wu L, Shi J, Zhou Z, Yan J,Wang A, Bian C, Ma J, Ma R, Liu H, Chen J, Huang Y, Zhou W, Bao L, Ouyang M, Pantelides S T and Gao H J 2020 Nano Res. 13 1127 [38] Ryou J, Kim Y S, Kc S and Cho K 2016 Sci. Rep. 6 29184 [39] Qin B, Ma C, Guo Q, Li X, Wei W, Ma C, Wang Q, Liu F, Zhao M, Xue G, Qi J, Wu M, Hong H, Du L, Zhao Q, Gao P, Wang X, Wang E, Zhang G, Liu C and Liu K 2024 Science 385 99 [40] Pasquale G, Lopriore E, Sun Z, Cernevics K, Tagarelli F, Watanabe K, Taniguchi T, Yazyev O V and Kis A 2023 Nat. Nanotechnol. 18 1416 [41] Zhang Y, Chen X, Zhang M, Wu X, Wang J, Tian R, Fang L, Zhang Y, Zhao J and Gan X 2024 Adv. Funct. Mater. 34 2402957 [42] Chen Y, Zhang M, Li D, Tang Y, Ren H, Li J, Liang K, Wang Y, Wen L, Li W, Kong W, Liu S, Wang H, Wang D and Zhu B 2023 ACS Nano 17 12499 [43] Zhang Y, Wang L, Chen H, Ma T, Lu X and Loh K P 2021 Advanced Electronic Materials 7 2100609 [44] Xue F, He X, Ma Y, Zheng D, Zhang C, Li L J, He J H, Yu B and Zhang X 2021 Nat. Commun. 12 7291 [45] Zhou J, Fei P, Gu Y, MaiW, Gao Y, Yang R, Bao G andWang Z L 2008 Nano Lett. 8 3973 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|