Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 125201    DOI: 10.1088/1674-1056/ad8552
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Shear rheology of confined double rings of dust particles in a dusty plasma

Miao Tian(田淼)1,†, Jiaqi Li(李佳琪)1,†, Xuebo Yu(于雪波)1, Xue Liu(刘雪)1, Shaopeng Li(李绍鹏)1, Qing Li(李庆)1, Fucheng Liu(刘富成)1,3, and Yafeng He(贺亚峰)1,2,3,‡
1 College of Physical Science and Technology, Hebei University, Baoding 071002, China;
2 Hebei Research Center of the Basic Discipline for Computational Physics, Baoding 071002, China;
3 Hebei Key Laboratory of High-Precision Computation and Application of Quantum Field Theory, Baoding 071002, China
Abstract  Shear rheology is a fundamental property of soft matter, which can be deformed. Although the shear rheology of fluids has been well studied at the macroscopic scale, understanding the microscopic processes of rheology at the single-particle level remains a challenging issue. Dusty plasma serves as an ideal platform for exploring microscopic dynamics of system at the individual particle level. Here, we study the shear rheology of confined double rings of strongly coupled dust particles in a dusty plasma. The outer ring is actively driven to rotate using laser illumination. Depending on the particle number, the inner ring may passively rotate following the outer ring at different angular speeds, resulting in shear rheology. The number of dust particles influences particle arrangement, which is characterized by the pair correlation function, bond-orientational order parameter, and triangle skewness. That further alters structural stability, significantly affecting the shear rheology.
Keywords:  dusty plasma      soft matter      shear rheology  
Received:  06 August 2024      Revised:  22 September 2024      Accepted manuscript online:  10 October 2024
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  47.57.-s (Complex fluids and colloidal systems)  
  83.60.Rs (Shear rate-dependent structure (shear thinning and shear thickening))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275064 and 12475203), the Natural Science Foundation of Hebei Province, China (Grant No. A2024201020), the Regional Key Projects of the National Natural Science Foundation of China (Grant No. U23A20678), the Scientific Research and Innovation Team Project of Hebei University (Grant No. IT2023B03), and the Post-graduate’s Innovation Fund Project of Hebei University (Grant No. HBU2024BS007).
Corresponding Authors:  Yafeng He     E-mail:  heyf@hbu.edu.cn

Cite this article: 

Miao Tian(田淼), Jiaqi Li(李佳琪), Xuebo Yu(于雪波), Xue Liu(刘雪), Shaopeng Li(李绍鹏), Qing Li(李庆), Fucheng Liu(刘富成), and Yafeng He(贺亚峰) Shear rheology of confined double rings of dust particles in a dusty plasma 2024 Chin. Phys. B 33 125201

[1] Chaudhuri M, Ivlev A V, Khrapak S A, Thomas H M and Morfill G E 2011 Soft Matter 7 1287
[2] Truby R L and Lewis J A 2016 Nature 540 371
[3] Lu X and Keidar M 2019 Mat. Sci. Eng. R. 138 36
[4] Ivlev A V, Löwen H, Morfill G E and Royall C P 2012 Complex Plasmas and Colloidal Dispersions: Particle-resolved Studies of Classical Liquids and Solids (Singapore: World Scientific Publishing Co. Pte. Ltd.) p. 9
[5] Morfill G E and Ivlev A V 2009 Rev. Mod. Phys. 81 1353
[6] Du C R, Nosenko V, Thomas H M, Lin Y F, Morfill G E and Ivlev A V 2019 Phys. Rev. Lett. 123 185002
[7] He Y F, Ai B Q, Dai C X, Song C, Wang R Q, Sun W T, Liu F C and Feng Y 2020 Phys. Rev. Lett. 124 075001
[8] Guan M, Chen Z D, Li M D, Liu Z M, Wang Y M and Yu M Y 2022 Chin. Phys. B 31 025201
[9] Qi X H, Duan W S, Chen J M and Wang S J 2011 Chin. Phys. B 20 025203
[10] Yuan C X, Yao J F, Bogdanov D V, Bogdanov E A, Kudryavtsev A A and Zhou Z X 2019 Plasma Sources Sci. Technol. 28 095020
[11] Zhang R Y, Liu Y H, Huang F, Chen Z Y and Li C Y 2017 Chin. Phys. Lett. 34 075203
[12] Nosenko V and Goree J 2004 Phys. Rev. Lett. 93 155004
[13] Feng Y, Goree J and Liu B 2010 Phys. Rev. Lett. 104 165003
[14] Williams I, Oñuz E C, Jack R L, Bartlett P, Löwen H and Royall C P 2014 J. Chem. Phys. 140 104907
[15] Williams I, Oñuz E C, Löwen H, Poon W C K and Royall C P 2022 J. Chem. Phys. 156 184902
[16] Williams I, Oñuz E C, Speck T, Bartlett P, Löwen H and Royall C P 2016 Nat. Phys. 12 98
[17] Williams I, Oñuz E C, Bartlett P, Löwen H and Royall C P 2013 Nat. Commun. 4 2555
[18] Gerlof S, Ortiz-Ambriz A, Tierno P and Klapp S H L 2020 Soft Matter 16 9423
[19] See supplemental material for “shear rheology of confined double rings of dust particles in a dusty plasma”
[20] COMSOL Multiphysics v. 5.3a. cn.comsol.com. COMSOL AB, Stockholm, Sweden
[21] Tian M, Yao T Y, Cai Z M, Liu F C and He Y F 2024 Acta Phys. Sin. 71 115201 (in Chinese)
[22] Wang S, Zhang N, Zhang S X, Tian M, Cai YW, FanWL, Liu F C and He Y F 2022 Chin. Phys. B 31 065202
[23] Wang K, Huang D and Feng Y 2019 Phys. Rev. E 99 063206
[24] Liu B, Goree J, Nosenko V and Boufendi L 2003 Phys. Plasmas 10 9
[25] Pendenza A, Habashi W G and Fossati M 2015 Int. J. Numer. Meth. Fluids 79 215
[26] Konopka U and Morfill G E 2000 Phys. Rev. Lett. 84 891
[1] Differences between two methods to derive a nonlinear Schrödinger equation and their application scopes
Yu-Xi Chen(陈羽西), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2024, 33(2): 025203.
[2] A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter
Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(5): 057504.
[3] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[4] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
[5] Large-amplitude dust acoustic solitons in an opposite polarity dusty plasma with generalized polarization force
Mahmood A. H. Khaled, Mohamed A. Shukri, and Yusra A. A. Hager. Chin. Phys. B, 2022, 31(1): 010505.
[6] Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model
Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺). Chin. Phys. B, 2021, 30(4): 045203.
[7] Oblique collisional effects of dust acoustic waves in unmagnetized dusty plasma
M S Alam, M R Talukder. Chin. Phys. B, 2020, 29(6): 065202.
[8] Directional motion of dust particles at different gear structuresin a plasma
Chao-Xing Dai(戴超星), Chao Song(宋超), Zhi-Xiang Zhou(周志向), Wen-Tao Sun(孙文涛), Zhi-Qiang Guo(郭志强), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2020, 29(2): 025203.
[9] Crystalline order and disorder in dusty plasmas investigated by nonequilibrium molecular dynamics simulations
Aamir Shahzad, Maogang He, Sheeba Ghani, Muhammad Kashif, Tariq Munir, Fang Yang. Chin. Phys. B, 2019, 28(5): 055201.
[10] Small amplitude double layers in an electronegative dusty plasma with q-distributed electrons
Zhong-Zheng Li(李中正), Juan-Fang Han(韩娟芳), Dong-Ning Gao(郜东宁), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(10): 105204.
[11] On the dielectric response function and dispersion relation in strongly coupled magnetized dusty plasmas
M Shahmansouri, N Khodabakhshi. Chin. Phys. B, 2018, 27(10): 105206.
[12] Collective motion of active particles in environmental noise
Qiu-shi Chen(陈秋实), Ming Ji(季铭). Chin. Phys. B, 2017, 26(9): 098903.
[13] Rotation of a single vortex in dusty plasma
Jia Yan(闫佳), Fan Feng(冯帆), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2017, 26(9): 095202.
[14] Mode transition in dusty micro-plasma driven by pulsed radio-frequency source in C2H2/Ar mixture
Xiang-Mei Liu(刘相梅), Rui Li(李瑞), Ya-Hui Zheng(郑亚辉). Chin. Phys. B, 2017, 26(4): 045202.
[15] Research progress of cholesteric liquid crystals with broadband reflection characteristics in application of intelligent optical modulation materials
Lan-Ying Zhang(张兰英), Yan-Zi Gao(高延子), Ping Song(宋平), Xiao-Juan Wu(武晓娟), Xiao Yuan(苑晓), Bao-Feng He(何宝凤), Xing-Wu Chen(陈兴武), Wang Hu(胡望), Ren-Wei Guo(郭仁炜), Hang-Jun Ding(丁杭军), Jiu-Mei Xiao(肖久梅), Huai Yang(杨槐). Chin. Phys. B, 2016, 25(9): 096101.
No Suggested Reading articles found!