Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 120702    DOI: 10.1088/1674-1056/ad84c1
GENERAL Prev   Next  

Realization of an optimized cylindrical uniform magnetic field coil via flexible printed circuit technology

A-Hui Zhao(赵阿慧)1,2,3, Yong-Le Zhang(张永乐)1,2,3, Yue-Yue Liang(梁跃跃)1,2,3, Yi Zhang(张艺)1,2,3, Jun-Jun Zha(查君君)1,2,3, Dao-Rong Rui(芮道荣)4, Xiao-Qiang Zhang(张肖强)1,2,3, and Kang Yang(杨康)1,2,3,†
1 School of Integrated Circuits, Anhui Polytechnic University, Wuhu 241000, China;
2 Anhui Engineering Research Center of Vehicle Display Integrated System, Wuhu 241000, China;
3 Joint Discipline Key Laboratory of Touch Display Materials and Devices in Anhui Province, Wuhu 241000, China;
4 Second Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
Abstract  The design and fabrication method of magnetic field coils with high uniformity is essential for atomic magnetometers. In this paper, a novel design strategy for cylindrical uniform coils is first proposed, which combines the target-field method (TFM) with an optimized slime mold algorithm (SMA) to determine optimal structure parameters. Then, the realization method for the designed cylindrical coil by using the flexible printed circuit (FPC) technology is presented. Compared with traditional fabrication methods, this method has advantages in excellent flexibility and bending property, making the coils easier to be arranged in limited space. Moreover, the manufacturing process of the FPC technology via a specific cylindrical uniform magnetic field coil is discussed in detail, and the successfully realized coil is well tested in a verification system. By comparing the uniformity performance of the experimental coil with the simulation one, the effectiveness of the FPC technology in producing cylindrical coils has been well validated.
Keywords:  uniform magnetic field coil      optimized target field method      slime mold algorithm      FPC technology  
Received:  27 June 2024      Revised:  06 September 2024      Accepted manuscript online:  09 October 2024
PACS:  07.55.-w (Magnetic instruments and components)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  84.32.Hh (Inductors and coils; wiring)  
  02.30.Zz (Inverse problems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62101004), the Opening Research Fund of Anhui Engineering Research Center of Vehicle Display Integrated Systems (Grant No. VDIS2023C05), the Opening Project of Key Laboratory of Electric Drive and Control of Anhui Province, China (Grant No. DQKJ202309), and the Excellent Scientific Research and Innovation Teams of Anhui Province, China (Grant No. 2022AH010059).
Corresponding Authors:  Kang Yang     E-mail:  yangkang@ahpu.edu.cn

Cite this article: 

A-Hui Zhao(赵阿慧), Yong-Le Zhang(张永乐), Yue-Yue Liang(梁跃跃), Yi Zhang(张艺), Jun-Jun Zha(查君君), Dao-Rong Rui(芮道荣), Xiao-Qiang Zhang(张肖强), and Kang Yang(杨康) Realization of an optimized cylindrical uniform magnetic field coil via flexible printed circuit technology 2024 Chin. Phys. B 33 120702

[1] Walker T G and Larsen M S 2016 Adv. At. Mol. Opt. Phys. 65 373
[2] Zhang C, Yuan H, Tang Z, QuanWand Fang J C 2016 Appl. Phys. Rev. 3 041305
[3] Wang J, Zhou B Q, Wu W F, Chen L L and Fang J C 2019 IEEE Sens. J. 19 2895
[4] Wang J, Song X, ZhouWY, Le Y and Ning X L 2021 IEEE Trans. Ind. Electron. 68 11544
[5] Liu Y W, Yang Y, Wang R M and Zhang M 2022 Meas. Sci. Technol. 33 095902
[6] Garrett M W 1951 J. Appl. Phys. 22 1091
[7] NordahnMA, Holst T and Shen Y Q 1999 Supercond. Sci. Technol. 12 946
[8] Turner R 1986 J. Phys. D: Appl. Phys. 19 L147
[9] Han B C, Yang J Z, Zhang X, Shi M X, Yuan S andWang L 2023 IEEE Trans. Ind. Electron. 70 2057
[10] Zhao FW, Zhou X Y, Xie X X andWang K 2021 IEEE Trans. Instrum. Meas. 70 1
[11] Taqavi O and Mirimani S M 2020 IET Electric Power Appl. 14 1505
[12] Zhu Y M, Chen X, Chang Y and Yang Z G 2018 J. Electrochem. Soc. 165 D494
[13] Wang J, Zhou B Q, Liu X, Wu W F, Chen L L, Han B C and Fang J C 2019 IEEE Access 7 74800
[14] Li S M, Chen H L,Wang M J, Heidari A A and Mirjalili S 2020 Future Gener. Comput. Syst. 111 300
[15] Zhang Y J, Yan Y X, Zhao J and Gao Z M 2022 IEEE Access 10 10907
[16] Yang K,Wu D, GaoWG, Ni T M, Zhang Q N, Zhang HWand Huang D C 2022 IEEE Trans. Instrum. Meas. 71 1
[17] Li L, Yan G P, Wu J Y, Yu X H, Guo Q Z and Kang E T 2008 Appl. Surf. Sci. 254 7331
[1] Response optimization of a three-axis sensitive SERF magnetometer for closed-loop operation
Yuanrui Zhou(周原锐), Yongze Sun(孙永泽), Xixi Wang(汪茜茜), Jianan Qin(秦佳男), Xue Zhang(张雪), and Yanzhang Wang(王言章). Chin. Phys. B, 2024, 33(2): 020701.
[2] Asymmetric magnetoimpedance effect and dipolar interactions of FINEMET/SiO2/FePd composite ribbons
Yong-Bin Guo(郭永斌), Dao Wang(王岛), Zhong-Min Wang(王忠民), Lei Ma(马垒), and Zhen-Jie Zhao(赵振杰). Chin. Phys. B, 2023, 32(7): 070703.
[3] A robust method for performance evaluation of the vapor cell for magnetometry
Zhi Liu(柳治), Sheng Zou(邹升), Kaifeng Yin(尹凯峰), Tao Shi(石韬),Junjian Tang(唐钧剑), and Heng Yuan(袁珩). Chin. Phys. B, 2023, 32(4): 040703.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[6] Two-dimensional finite element mesh generation algorithm for electromagnetic field calculation
Chun-Feng Zhang(章春锋), Wei Wang(汪伟), Si-Guang An(安斯光), and Nan-Ying Shentu(申屠南瑛). Chin. Phys. B, 2021, 30(1): 010101.
[7] General analytical method of designing shielded coils for arbitrary axial magnetic field
Yi Zhang(张燚), Yu-Jiao Li(李玉姣), Qi-Yuan Jiang(江奇渊), Zhi-Guo Wang(汪之国), Tao Xia(夏涛), Hui Luo(罗晖). Chin. Phys. B, 2019, 28(11): 110702.
[8] Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks
Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(5): 053701.
[9] In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer
Fang Jian-Cheng (房建成), Wang Tao (王涛), Zhang Hong (张红), Li Yang (李阳), Cai Hong-Wei (蔡洪炜). Chin. Phys. B, 2015, 24(6): 060702.
[10] Mössbauer studies on the shape effect of Fe84.94Si9.68Al5.38 particles on their microwave permeability
Han Man-Gui (韩满贵), Deng Long-Jiang (邓龙江). Chin. Phys. B, 2013, 22(8): 083303.
[11] Fabrication and electromagnetic wave absorption properties of amorphous Ni–P nanotubes
Lu Hai-Peng(陆海鹏), Han Man-Gui(韩满贵), Cai Li(蔡黎), and Deng Long-Jiang(邓龙江). Chin. Phys. B, 2011, 20(6): 060701.
[12] A digital filtering scheme for SQUID based magnetocardiography
Zhu Xue-Min (朱学敏), Ren Yu-Feng (任育峰), Yu Hong-Wei (于洪伟), Zhao Shi-Ping (赵士平), Chen Geng-Hua (陈赓华), Zhang Li-Hua (张利华), Yang Qian-Sheng (杨乾声). Chin. Phys. B, 2006, 15(1): 100-103.
No Suggested Reading articles found!