Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 053201    DOI: 10.1088/1674-1056/22/5/053201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Spectral decomposition at complex laser polarization configuration

Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Hong-Ping (刘红平)
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences, Wuhan 430071, China
Abstract  We study the role of laser polarization in the diamagnetic spectrum for the transition from the ground state to the highly excited Rydberg states through a single photon absorption. For simplicity, one usually polarizes the irradiation laser to the selected main quantum axis, which is along the applied external electric or magnetic field. The transition selection rule is simply expressed as Δm=0, which corresponds to the π transition. When the polarization is circularly polarized around the main axis, the σ+ or σ- transition occurs, corresponding to the selection rule of Δm=1 or Δm=-1, respectively. A slightly more complex case is that the laser is linearly polarized perpendicular to the main axis. The numerical calculation shows that we can decompose the transition into the sum of σ+ and σ- transitions, it is noted as the σ transition. For the more complex case in which the laser is linearly polarized with an arbitrary angle with respect to the main axis, we have to decompose the polarization into one along the main axis and the other one perpendicular to the main axis. They correspond to π and σ transitions, respectively. We demonstrate that these transitions in the diamagnetic spectrum and the above spectral decomposition well explain the experimentally observed spectra.
Keywords:  diamagnetic spectrum      Rydberg atoms      laser polarization  
Received:  21 October 2012      Revised:  26 November 2012      Accepted manuscript online: 
PACS:  32.60.+i (Zeeman and Stark effects)  
  32.30.Jc (Visible and ultraviolet spectra)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174329 and 91121005) and the National Basic Research Program of China (Grant No. 2013CB922003).
Corresponding Authors:  Liu Hong-Ping     E-mail:  liuhongping@wipm.ac.cn

Cite this article: 

Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Hong-Ping (刘红平) Spectral decomposition at complex laser polarization configuration 2013 Chin. Phys. B 22 053201

[1] Herzberg G 1944 Atomic Spectra and Atomic Structure (New York: Dover Publications)
[2] Herzberg G 1989 Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules ewblock (Malabar: Krieger Publishing Company)
[3] Zewail A H 2008 Physical Biology: From Atoms to Medicine (London: Imperial College Press)
[4] Cacciani P, Liberman S, Luc-Koenig E, Pinard J and Thomas C 1988 J. Phys. B 21 3473
[5] Zimmerman M L, Castro J C and Kleppner D 1978 Phys. Rev. Lett. 40 1083
[6] Garton W R S and Tomkins F S 1969 Astrophys. J. 158 839
[7] van der Veldt T, Vassen W and Hogervorst W 1992 J. Phys. B 25 3295
[8] Fonck R J, Roesler F L, Tracy D H, Lu K T, Tomkins F S and Garton W R S 1977 Phys. Rev. Lett. 39 1513
[9] Lu K T, Tomkins F S and Garton W R S 1978 Proc. R. Soc. London, Ser. A 362 421
[10] Connerade J P, Droungas G, Elliott R, He X, Karapanagioti N, Farooq M A, Ma H, Marangos J P and Nawaz M 1994 J. Phys. B 27 2753
[11] Connerade J P, Droungas G, Karapanagioti N E and Zhan M S 1997 J. Phys. B 30 2047
[12] Droungas G, Karapanagioti N E and Connerade J P 1995 Phys. Rev. A 51 191
[13] Elliott R J, Droungas G and Connerade J P 1995 J. Phys. B 28 L537
[14] Elliott R J, Droungas G, Connerade J P, He X H and Taylor K T 1996 J. Phys. B 29 3341
[15] Liu H P, Quan W, Shen L, Connerade J P and Zhan M S 2007 Phys. Rev. A 76 013412
[16] Yang H F, Gao W, Quan W, Liu X J and Liu H P 2012 Phys. Rev. A 85 032508
[17] Gao W, Yang H F, Cheng H, Liu X J and Liu H P 2012 Phys. Rev. A 86 012517
[18] Simons G 1974 J. Chem. Phys. 60 645
[19] Halley M H, Delande D and Taylor K T 1992 J. Phys. B 25 L525
[20] De Boor C 1972 J. Approx. Theory 6 50
[21] Zhang Y X, Meng H Y and Shi T Y 2008 Chin. Phys. B 17 140
[22] Quan W, Liu H P, Shen L and Zhan M S 2007 Chin. Phys. 16 3642
[23] Lu K T, Tomkins F S, Crosswhite H M and Crosswhite H 1978 Phys. Rev. Lett. 41 1034
[24] O'Mahony P F and Taylor K T 1986 Phys. Rev. Lett. 57 2931
[25] Halley M H, Delande D and Taylor K T 1993 J. Phys. B 26 1775
[1] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[2] Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy
Lan Yang(杨岚), Miao Liu(刘淼), Yi-Tong Liu(刘奕彤), Qing-Xue Li(李庆雪), Su-Yu Li(李苏宇), Yuan-Fei Jiang(姜远飞), An-Min Chen(陈安民), Ming-Xing Jin(金明星). Chin. Phys. B, 2020, 29(6): 065203.
[3] Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2020, 29(1): 013201.
[4] Tunable multistability and nonuniform phases in a dimerized two-dimensional Rydberg lattice
Han-Xiao Zhang(张焓笑), Chu-Hui Fan(范楚辉), Cui-Li Cui(崔淬砺), Jin-Hui Wu(吴金辉). Chin. Phys. B, 2020, 29(1): 013204.
[5] Properties of collective Rabi oscillations with two Rydberg atoms
Dan-Dan Ma(马丹丹), Ke-Ye Zhang(张可烨), Jing Qian(钱静). Chin. Phys. B, 2019, 28(1): 013202.
[6] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[7] Relationship measurement between ac-Stark shift of 40Ca+ clock transition and laser polarization direction
Hong-Fang Song(宋红芳), Shao-Long Chen(陈邵龙), Meng-Yan Zeng(曾孟彦), Yao Huang(黄垚), Hu Shao(邵虎), Yong-Bo Tang(唐永波), Hua Guan(管桦), Ke-Lin Gao(高克林). Chin. Phys. B, 2017, 26(9): 099501.
[8] Polarization control of multi-photon absorption under intermediate femtosecond laser field
Wenjing Cheng(程文静), Pei Liu(刘沛), Guo Liang(梁果), Ping Wu(吴萍), Tianqing Jia(贾天卿), Zhenrong Sun(孙真荣), Shian Zhang(张诗按). Chin. Phys. B, 2017, 26(8): 083201.
[9] Up-conversion luminescence polarization control in Er3+-doped NaYF4 nanocrystals
Hui Zhang(张晖), Yun-Hua Yao(姚云华), Shi-An Zhang(张诗按), Chen-Hui Lu(卢晨晖), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2016, 25(2): 023201.
[10] Nonlinear spectroscopy of barium in parallel electric and magnetic fields
Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Hong-Ping (刘红平). Chin. Phys. B, 2014, 23(10): 103201.
[11] An effective quantum defect theory for the diamagnetic spectrum of barium Rydberg atom
Li Bo (李波), Liu Hong-Ping (刘红平). Chin. Phys. B, 2013, 22(1): 013203.
[12] Exact quantum defect theory approach for lithium in magnetic fields
Xu Jia-Kun (徐家坤), Chen Hai-Qing (陈海清), Liu Hong-Ping (刘红平). Chin. Phys. B, 2013, 22(1): 013204.
[13] Polarization and phase control of two-photon absorption in an isotropic molecular system
Lu Chen-Hui (卢晨晖), Zhang Hui (张晖), Zhang Shi-An (张诗按), Sun Zhen-Rong (孙真荣). Chin. Phys. B, 2012, 21(12): 123202.
[14] The fractal structure in the ionization dynamics of Rydberg lithium atoms in a static electric field
Deng Shan-Hong(邓善红), Gao Song(高嵩), Li Yong-Ping(李永平), Xu Xue-You(徐学友), and Lin Sheng-Lu(林圣路). Chin. Phys. B, 2010, 19(4): 040511.
[15] Recombination during expansion of ultracold plasma
Zhao Jian-Ming(赵建明), Zhang Lin-Jie(张临杰), Feng Zhi-Gang(冯志刚), Li Chang-Yong(李昌勇), and Jia Suo-Tang(贾锁堂). Chin. Phys. B, 2010, 19(4): 043202.
No Suggested Reading articles found!