Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 113401    DOI: 10.1088/1674-1056/ad74e6
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical study of differential cross sections for the ionization of helium by fast proton impact

M Mondal, B Mandal, T Mistry, D Jana, and M Purkait†
Department of Physics, Ramakrishna Mission Residential College, Narendrapur, Kolkata-700103, India
Abstract  We present the angular distribution of the ejected electron for single ionization of He by fast proton impact. A four-body formalism of the three-Coulomb wave is applied to calculate the triple differential cross sections at several impact energies in the scattering, perpendicular and azimuthal planes. Moreover, the three-body formalism of three-Coulomb, two-Coulomb and first Born approximation models has also been used to study the many-body effect on electron emission and the validity of the models. In the three-Coulomb wave model, the final state wave function incorporates distortion due to the three-body mutual Coulombic interaction. In this formalism, we use an uncorrelated and correlated Born initial state, which consists of a plane wave for the incoming projectile times a two-electron bound state wavefunction of the helium atom representing the 1s${^2}(^{1}$S) state. But, in the case of the three-body formalism, the initial state wavefunction consists of a long-range Coulomb distortion for the incoming projectile and one active electron of the He atom described by the Roothaan-Hartree-Fock wavefunction. The structure with a single or two peaks with unequal intensity is observed in the angular distributions of the triple differential cross sections for the different kinematic conditions. In addition, the influence of static electron correlations is investigated using different bound state wavefunctions for the ground state of the He target. In the four-body formalism, the present computations are very fast by reducing a nine-dimensional integral to a two-dimensional real integral. Despite the simplicity and speed of the proposed quadrature, the comparison shows that the obtained results are in reasonable agreement with the experiment and are compatible with those of other theories.
Keywords:  ionization      cross sections      collision      atoms      ions  
Received:  20 June 2024      Revised:  12 August 2024      Accepted manuscript online:  29 August 2024
PACS:  34.70.+e (Charge transfer)  
Fund: Project supported by the Science and Engineering Research Board (SERB), New Delhi, India (Grant No. CRG/2022/001668).
Corresponding Authors:  M Purkait     E-mail:  mpurkait_2007@rediffmail.com,rkmcnpur@gmail.com

Cite this article: 

M Mondal, B Mandal, T Mistry, D Jana, and M Purkait Theoretical study of differential cross sections for the ionization of helium by fast proton impact 2024 Chin. Phys. B 33 113401

[1] Feng L, Sun S, Duan Q and Jia X 2015 Chin. J. Chem. Phys. 28 595
[2] Wang F J, Sun S Y, Niu X J and Jia X F 2017 Europhys. Lett. 119 43001
[3] Amiri Bidvari S, Fathi R and Brunger M J 2022 Eur. Phys. J. Plus 137 701
[4] Amiri Bidvari S and Fathi R 2021 Eur. Phys. J. Plus 136 190
[5] Amiri Bidvari S and Fathi R 2021 Eur. Phys. J. Plus 136 453
[6] Ciappina M F and Cravero W R 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2183
[7] Maydanyuk N V, Hasan A, Foster M, Tooke B, Nanni E, Madison D H and Schulz M 2005 Phys. Rev. Lett. 94 243201
[8] Dey R and Roy A C 2006 Phys. Lett. A 353 341
[9] Sun S Y, Zhao H J and Jia X F 2018 Europhys. Lett. 123 23002
[10] Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H and Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463
[11] Misra D, et al. 2009 Phys. Rev. Lett. 102 153201
[12] Schulz M, Hasan A, Maydanyuk N V, Foster M, Tooke B and Madison D H 2006 Phys. Rev. A 73 062704
[13] Laforge A C, Egodapitiya K N, Alexander J S, Hasan A, Ciappina M F, Khakoo M A and Schulz M 2009 Phys. Rev. Lett. 103 053201
[14] Schulz M, et al. 2010 Phys. Rev. A 81 052705
[15] Gassert H, Chuluunbaatar O, Waitz M, et al. 2016 Phys. Rev. Lett. 116 073201
[16] Schulzet M, et al. 2013 Phys. Rev. A 88 022704
[17] Fischer D, Moshammer R, Schulz M, Voitkiv A and Ullrich J 2003 J. Phys. B: At. Mol. Opt. Phys. 36 3555
[18] Chuluunbaatar O, et al. 2019 Phys. Rev. A 99 062711
[19] Schulz M, Moshammer R, Fischer D, Kollmus H, Madison D H, Jones S and Ullrich J 2003 Nature 422 48
[20] Foster M, Madison D H, Peacher J L and Ullrich J 2004 J. Phys. B: At. Mol. Opt. Phys. 37 3797
[21] Ganbari-Adivi E and Eskandari S 2015 Chin. Phys. B 24 013401
[22] Ganbari-Adivi E and Eskandari S 2015 Chin. Phys. B 24 103403
[23] Ciappina M F, Cravero W R and Schulz M 2007 J. Phys. B: At. Mol. Opt. Phys. 40 2577
[24] Ciappina M F and Cravero W R 2008 Nucl. Instrum. Meth. Phys. Res. B 266 555
[25] Purohit G, Singh P and Patidar V 2014 J. Elect. Spect 197 50
[26] Campeanu R I and Whelan C T 2021 Atoms 9 33
[27] Sarkadi L 2018 Phys. Rev. A 97 042703
[28] Abdurakhmanov I B, Kadyrov A S, Alladustov Sh U and Bray I 2019 Phys. Rev. A 100 062708
[29] Madison D, Schulz M, Jones S, Foster M, Moshammer R and Ullrich J 2002 J. Phys. B: At. Mol. Opt. Phys. 35 3297
[30] Schulz M, Moshammer R, Fischer D and Ullrich J 2004 J. Phys. B: At. Mol. Opt. Phys. 37 4055
[31] Harris A L, Madison D H, Peacher J L, Foster M, Bartschat K and Saha H P 2007 Phys. Rev. A 75 032718
[32] Gulyas L, Egri S and Igarashi A 2019 Phys. Rev. A 99 032704
[33] Ciappina M F and Cravero W R 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1091
[34] Abdurakhmanov I B, Bray I, Fursa D V, Kadyrov A S and Stelbovis A T 2012 Phys. Rev. A 86 034701
[35] Brauner M, Briggs J S and Klar H 1989 J. Phys. B: At. Mol. Opt. Phys. 22 2265
[36] Jia X, Shi Q, Chen Z, Chen J and Zu K 1997 Phys. Rev. A 55 1971
[37] Purkait K, Mondal M, Haque A, Mandal B and Purkait M 2023 J. Phys. B: At. Mol. Opt. Phys. 56 145201
[38] Jana S, Samanta R and Purkait M 2012 Eur. Phys. J. D 66 243
[39] Foster M, et al.. 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1569
[40] Chuluunbaatar O, Zaytsev S A, Kouzakov K A, Galstyan A, Shablov V L and Popov Yu V 2017 Phys. Rev. A 96 042716
[41] Jana S, Samanta R and Purkait M 2013 Phys. Scr. 88 055301
[42] Pedlow R T, O’rourke S F C and Crothers D S F 2005 Phys. Rev. A 72 062719
[43] Bellm S, Lower J, Bartschat K, Guan X, Weflen D, Foster M, Harris A L and Madison D H 2007 Phys. Rev. A 75 042704
[44] Bellm S, Lower J, Weigold E, Bray I, Fursa D V, Bartschat K, Harris A L and Madison D H 2008 Phys. Rev. A 78 032710
[45] Harris A L, Milum B and Madison D H 2011 Phys. Rev. A 84 052718
[46] Harris A L and Morrison K 2013 J. Phys. B: At. Mol. Opt. Phys. 46 145202
[47] Ghanbari-Adivi E and Velayali A N 2013 J. Phys. B: At. Mol. Opt. Phys. 46 065204
[48] Harris A 2019 Atoms. 44 7
[49] Jana D, Samaddar S, Purkait K and Purkait M 2021 Eur. Phys. J. D 75 164
[50] Clementi E and Roetti C 1974 At. Data. Nucl. Data Tables 14 177
[51] Mondal A, Mandal C R and Purkait M 2016 Eur. Phys. J. D 70 16
[52] Mitra C and Sil N C 1976 Phys. Rev. A 14 1009
[53] Lewis R R 1956 Phys. Rev 102 537
[54] Ren X, et al. 2015 Phys. Rev. A 91 032707
[55] Ren X, et al. 2016 Phys. Rev. A 93 062704
[56] Byron F W and Joachain C J 1966 Phys. Rev. Lett. 16 1139
[57] Hylleraas E A 1929 Z. Phys. 54 347
[1] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[2] Multidimensional images and aberrations in STEM
Eric R. Hoglund and Andrew R. Lupini. Chin. Phys. B, 2024, 33(9): 096807.
[3] Noise-induced phase transition in the Vicsek model through eigen microstate methodology
Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎). Chin. Phys. B, 2024, 33(9): 090501.
[4] Exploration of microscopic physical processes of Z-pinch by a modified electrostatic direct implicit particle-in-cell algorithm
Kaixuan Li(李开轩), Cheng Ning(宁成), Ye Dong(董烨), and Chuang Xue(薛创). Chin. Phys. B, 2024, 33(9): 095201.
[5] Dendritic tip selection during solidification of alloys: Insights from phase-field simulations
Qingjie Zhang(张清杰), Hui Xing(邢辉), Lingjie Wang(王灵杰), and Wei Zhai(翟薇). Chin. Phys. B, 2024, 33(9): 096103.
[6] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[7] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[8] Pressure generation under deformation in a large-volume press
Saisai Wang(王赛赛), Xinyu Zhao(赵鑫宇), Kuo Hu(胡阔), Bingtao Feng(丰丙涛), Xuyuan Hou(侯旭远), Yiming Zhang(张羿鸣), Shucheng Liu(刘书成), Yuchen Shang(尚宇琛), Zhaodong Liu(刘兆东), Mingguang Yao(姚明光), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2024, 33(9): 098104.
[9] Time-energy distribution of photoelectron from atomic states with different magnetic quantum numbers in elliptically polarized laser fields
Jingyang Xu(徐菁阳), Li Guo(郭丽), Xin Qi(齐昕), Ronghua Lu(陆荣华), Min Zhang(张敏), Jingtao Zhang(张敬涛), and Jing Chen(陈京). Chin. Phys. B, 2024, 33(9): 093301.
[10] Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrödinger equation with sextic operator under non-zero boundary conditions
Luyao Zhang(张路瑶) and Xiyang Xie(解西阳). Chin. Phys. B, 2024, 33(9): 090207.
[11] Riemann-Hilbert problem for the defocusing Lakshmanan-Porsezian-Daniel equation with fully asymmetric nonzero boundary conditions
Jianying Ji(纪建英) and Xiyang Xie(解西阳). Chin. Phys. B, 2024, 33(9): 090201.
[12] Multi-soliton solutions of coupled Lakshmanan-Porsezian-Daniel equations with variable coefficients under nonzero boundary conditions
Hui-Chao Zhao(赵会超), Lei-Nuo Ma(马雷诺), and Xi-Yang Xie(解西阳). Chin. Phys. B, 2024, 33(8): 080201.
[13] Multi-objective global optimization approach predicted quasi-layered ternary TiOS crystals with promising photocatalytic properties
Yi-Jie Xiang(向依婕), Siyan Gao(高思妍), Chunlei Wang(王春雷), Haiping Fang(方海平), Xiangmei Duan(段香梅), Yi-Feng Zheng(郑益峰), and Yue-Yu Zhang(张越宇). Chin. Phys. B, 2024, 33(8): 087101.
[14] Quasi-three-dimensional hydrodynamics of the corona region of laser irradiation of a slab
Xiao-Mei Dong(董晓梅), Ben-Jin Guan(关本金), and Ying-Jun Li(李英骏). Chin. Phys. B, 2024, 33(8): 085203.
[15] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
No Suggested Reading articles found!