|
|
Theoretical study of differential cross sections for the ionization of helium by fast proton impact |
M Mondal, B Mandal, T Mistry, D Jana, and M Purkait† |
Department of Physics, Ramakrishna Mission Residential College, Narendrapur, Kolkata-700103, India |
|
|
Abstract We present the angular distribution of the ejected electron for single ionization of He by fast proton impact. A four-body formalism of the three-Coulomb wave is applied to calculate the triple differential cross sections at several impact energies in the scattering, perpendicular and azimuthal planes. Moreover, the three-body formalism of three-Coulomb, two-Coulomb and first Born approximation models has also been used to study the many-body effect on electron emission and the validity of the models. In the three-Coulomb wave model, the final state wave function incorporates distortion due to the three-body mutual Coulombic interaction. In this formalism, we use an uncorrelated and correlated Born initial state, which consists of a plane wave for the incoming projectile times a two-electron bound state wavefunction of the helium atom representing the 1s${^2}(^{1}$S) state. But, in the case of the three-body formalism, the initial state wavefunction consists of a long-range Coulomb distortion for the incoming projectile and one active electron of the He atom described by the Roothaan-Hartree-Fock wavefunction. The structure with a single or two peaks with unequal intensity is observed in the angular distributions of the triple differential cross sections for the different kinematic conditions. In addition, the influence of static electron correlations is investigated using different bound state wavefunctions for the ground state of the He target. In the four-body formalism, the present computations are very fast by reducing a nine-dimensional integral to a two-dimensional real integral. Despite the simplicity and speed of the proposed quadrature, the comparison shows that the obtained results are in reasonable agreement with the experiment and are compatible with those of other theories.
|
Received: 20 June 2024
Revised: 12 August 2024
Accepted manuscript online: 29 August 2024
|
PACS:
|
34.70.+e
|
(Charge transfer)
|
|
Fund: Project supported by the Science and Engineering Research Board (SERB), New Delhi, India (Grant No. CRG/2022/001668). |
Corresponding Authors:
M Purkait
E-mail: mpurkait_2007@rediffmail.com,rkmcnpur@gmail.com
|
Cite this article:
M Mondal, B Mandal, T Mistry, D Jana, and M Purkait Theoretical study of differential cross sections for the ionization of helium by fast proton impact 2024 Chin. Phys. B 33 113401
|
[1] Feng L, Sun S, Duan Q and Jia X 2015 Chin. J. Chem. Phys. 28 595 [2] Wang F J, Sun S Y, Niu X J and Jia X F 2017 Europhys. Lett. 119 43001 [3] Amiri Bidvari S, Fathi R and Brunger M J 2022 Eur. Phys. J. Plus 137 701 [4] Amiri Bidvari S and Fathi R 2021 Eur. Phys. J. Plus 136 190 [5] Amiri Bidvari S and Fathi R 2021 Eur. Phys. J. Plus 136 453 [6] Ciappina M F and Cravero W R 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2183 [7] Maydanyuk N V, Hasan A, Foster M, Tooke B, Nanni E, Madison D H and Schulz M 2005 Phys. Rev. Lett. 94 243201 [8] Dey R and Roy A C 2006 Phys. Lett. A 353 341 [9] Sun S Y, Zhao H J and Jia X F 2018 Europhys. Lett. 123 23002 [10] Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H and Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463 [11] Misra D, et al. 2009 Phys. Rev. Lett. 102 153201 [12] Schulz M, Hasan A, Maydanyuk N V, Foster M, Tooke B and Madison D H 2006 Phys. Rev. A 73 062704 [13] Laforge A C, Egodapitiya K N, Alexander J S, Hasan A, Ciappina M F, Khakoo M A and Schulz M 2009 Phys. Rev. Lett. 103 053201 [14] Schulz M, et al. 2010 Phys. Rev. A 81 052705 [15] Gassert H, Chuluunbaatar O, Waitz M, et al. 2016 Phys. Rev. Lett. 116 073201 [16] Schulzet M, et al. 2013 Phys. Rev. A 88 022704 [17] Fischer D, Moshammer R, Schulz M, Voitkiv A and Ullrich J 2003 J. Phys. B: At. Mol. Opt. Phys. 36 3555 [18] Chuluunbaatar O, et al. 2019 Phys. Rev. A 99 062711 [19] Schulz M, Moshammer R, Fischer D, Kollmus H, Madison D H, Jones S and Ullrich J 2003 Nature 422 48 [20] Foster M, Madison D H, Peacher J L and Ullrich J 2004 J. Phys. B: At. Mol. Opt. Phys. 37 3797 [21] Ganbari-Adivi E and Eskandari S 2015 Chin. Phys. B 24 013401 [22] Ganbari-Adivi E and Eskandari S 2015 Chin. Phys. B 24 103403 [23] Ciappina M F, Cravero W R and Schulz M 2007 J. Phys. B: At. Mol. Opt. Phys. 40 2577 [24] Ciappina M F and Cravero W R 2008 Nucl. Instrum. Meth. Phys. Res. B 266 555 [25] Purohit G, Singh P and Patidar V 2014 J. Elect. Spect 197 50 [26] Campeanu R I and Whelan C T 2021 Atoms 9 33 [27] Sarkadi L 2018 Phys. Rev. A 97 042703 [28] Abdurakhmanov I B, Kadyrov A S, Alladustov Sh U and Bray I 2019 Phys. Rev. A 100 062708 [29] Madison D, Schulz M, Jones S, Foster M, Moshammer R and Ullrich J 2002 J. Phys. B: At. Mol. Opt. Phys. 35 3297 [30] Schulz M, Moshammer R, Fischer D and Ullrich J 2004 J. Phys. B: At. Mol. Opt. Phys. 37 4055 [31] Harris A L, Madison D H, Peacher J L, Foster M, Bartschat K and Saha H P 2007 Phys. Rev. A 75 032718 [32] Gulyas L, Egri S and Igarashi A 2019 Phys. Rev. A 99 032704 [33] Ciappina M F and Cravero W R 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1091 [34] Abdurakhmanov I B, Bray I, Fursa D V, Kadyrov A S and Stelbovis A T 2012 Phys. Rev. A 86 034701 [35] Brauner M, Briggs J S and Klar H 1989 J. Phys. B: At. Mol. Opt. Phys. 22 2265 [36] Jia X, Shi Q, Chen Z, Chen J and Zu K 1997 Phys. Rev. A 55 1971 [37] Purkait K, Mondal M, Haque A, Mandal B and Purkait M 2023 J. Phys. B: At. Mol. Opt. Phys. 56 145201 [38] Jana S, Samanta R and Purkait M 2012 Eur. Phys. J. D 66 243 [39] Foster M, et al.. 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1569 [40] Chuluunbaatar O, Zaytsev S A, Kouzakov K A, Galstyan A, Shablov V L and Popov Yu V 2017 Phys. Rev. A 96 042716 [41] Jana S, Samanta R and Purkait M 2013 Phys. Scr. 88 055301 [42] Pedlow R T, O’rourke S F C and Crothers D S F 2005 Phys. Rev. A 72 062719 [43] Bellm S, Lower J, Bartschat K, Guan X, Weflen D, Foster M, Harris A L and Madison D H 2007 Phys. Rev. A 75 042704 [44] Bellm S, Lower J, Weigold E, Bray I, Fursa D V, Bartschat K, Harris A L and Madison D H 2008 Phys. Rev. A 78 032710 [45] Harris A L, Milum B and Madison D H 2011 Phys. Rev. A 84 052718 [46] Harris A L and Morrison K 2013 J. Phys. B: At. Mol. Opt. Phys. 46 145202 [47] Ghanbari-Adivi E and Velayali A N 2013 J. Phys. B: At. Mol. Opt. Phys. 46 065204 [48] Harris A 2019 Atoms. 44 7 [49] Jana D, Samaddar S, Purkait K and Purkait M 2021 Eur. Phys. J. D 75 164 [50] Clementi E and Roetti C 1974 At. Data. Nucl. Data Tables 14 177 [51] Mondal A, Mandal C R and Purkait M 2016 Eur. Phys. J. D 70 16 [52] Mitra C and Sil N C 1976 Phys. Rev. A 14 1009 [53] Lewis R R 1956 Phys. Rev 102 537 [54] Ren X, et al. 2015 Phys. Rev. A 91 032707 [55] Ren X, et al. 2016 Phys. Rev. A 93 062704 [56] Byron F W and Joachain C J 1966 Phys. Rev. Lett. 16 1139 [57] Hylleraas E A 1929 Z. Phys. 54 347 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|