Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 094206    DOI: 10.1088/1674-1056/21/9/094206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Comparative study on the power scaling performance of three different coherent polarization beam combination system structures

Ma Peng-Fei (马鹏飞), Zhou Pu (周朴), Ma Yan-Xing (马阎星), Su Rong-Tao (粟荣涛), Liu Ze-Jin (刘泽金)
College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  Coherent polarization beam combination (CPBC) is a new kind of coherent beam combination configuration with high combining efficiency and excellent beam quality. In order to extend the CPBC system to a large scale, we provide a comparative study on the power scaling performance of three different coherent polarization beam combination system structures. It is found that the pairwise structure has high tolerance to aberrations and has a potential to extend to a large scale with high combining efficiency. In consideration of all the aberrations, the combining efficiency of the pairwise structure can be reached as high as 90% when the combined beams are more than 200. Some instructive suggestions are given to extend the CPBC system to a large scale.
Keywords:  coherent beam combination      polarization beam combination      aberrations  
Received:  09 January 2012      Revised:  26 April 2012      Accepted manuscript online: 
PACS:  42.55.-f (Lasers)  
  42.25.Kb (Coherence)  
  42.25.Ja (Polarization)  
Corresponding Authors:  Liu Ze-Jin     E-mail:  zejinliu@nudt.edu.cn

Cite this article: 

Ma Peng-Fei (马鹏飞), Zhou Pu (周朴), Ma Yan-Xing (马阎星), Su Rong-Tao (粟荣涛), Liu Ze-Jin (刘泽金) Comparative study on the power scaling performance of three different coherent polarization beam combination system structures 2012 Chin. Phys. B 21 094206

[1] Gray S, Liu A, Walton D T, Wang J, Li M J, Chen X, Ruffin A B, DeMeritt J A and Zenteno L A 2007 Opt. Express 15 17044
[2] Jeong Y, Nilsson J, Sahu J K, Payne D N, Horley R, Hickey L M B and Turner P W 2007 IEEE J. Sel. Top. Quantum Electron. 13 546
[3] Goodno G D, Book L D and Rothenberg J E 2009 Opt. Lett. 34 1204
[4] Anderegg J, Broanan S, Weber M, Komine H and Wickham M 2003 Proc. SPIE 4974 1
[5] Corcoran C J and Durville F 2005 Appl. Phys. Lett. 86 201118
[6] Goodno G D, Asman C P, Anderegg J, Brosnan S, Cheung E C, Hammons D, Injeyan H, Komine H, Long W H, McClellan M, McNaught S J, Redmond S, Simpson R, Sollee J, Weber M, Weiss S B and Wickham M 2007 IEEE J. Sel. Top. Quantum Electron. 13 460
[7] Shay T M, Benham V, Baker J T, Ward B, Sanchez A D, Culpepper M A, Pilkington D, Spring J, Nelson D and Lu C A 2006 Opt. Express 14 12022
[8] Shay T M, Baker J T, Sanchez A D, Robin C A, Vergien C L, Zerinque C, Gallant D, Lu C A, Pulford B, Bronder T J and Lucero A 2009 Proc. SPIE 7195 71951M
[9] Kansky J E, Yu C X and Murphy D V 2006 Proc. SPIE 6306 63060G
[10] Augst S J, Ranka J, Fan T Y and Sanchez A 2007 J. Opt. Soc. Am. B 24 1707
[11] Jolivet V, Bourdon P, Bennai B, Lombard L, Goular D, Pourtal E, Canat G, Jaouën Y, Moreau B and Vasseur O 2009 IEEE J. Sel. Top. Quantum Electron. 15 257
[12] Zhou P, Liu Z, Wang X, Ma Y, Ma H, Xu X and Guo S 2009 IEEE J. Sel. Top. Quantum Electron. 15 248
[13] Zhou P, Ma Y X, Wang X L, Ma H T, Xu X J and Liu Z J 2010 Chin. Phys. B 19 014202
[14] Wang X L, Ma Y X, Zhou P, He B, Xue Y H, Liu C, Li Z, Xiao H, Xu X J, Zhou J, Liu Z J and Zhao Y J 2011 Chin. Phys. B 20 114203
[15] Wang B, Mies E and Minden M 2009 Opt.Lett. 34 863
[16] Vorontsov M A, Weyrauch T and Beresnev L A 2009 IEEE J. Sel. Top. Quantum Electron. 15 269
[17] Uberna R, Bratcher A and Tiemann B G 2010 IEEE J. Quantum Electron. 46 1191
[18] Uberna R, Bratcher A and Tiemann B G 2010 Appl. Opt. 49 6762
[19] Yu C, Kansky J, Shaw S, Murphy D and Higgs C 2006 OSA/CLEO CthAA6
[1] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[2] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[3] Multi-wavelength laser active coherent combination
Han Kai(韩凯), Xu Xiao-Jun(许晓军), and Liu Ze-Jin(刘泽金) . Chin. Phys. B, 2012, 21(5): 054205.
[4] Tiled-aperture coherent beam combining of two high-power fibre amplifiers
Zhou Pu(周朴), Ma Yan-Xing(马阎星), Wang Xiao-Lin(王小林), Ma Hao-Tong(马浩统), Xu Xiao-Jun(许晓军), and Liu Ze-Jin(刘泽金) . Chin. Phys. B, 2010, 19(1): 014202.
[5] Aberration-free two-thin-lens systems based on negative-index materials
Lin Zhi-Li(林志立), Ding Jie-Chen(丁婕琛), and Zhang Pu(张朴). Chin. Phys. B, 2008, 17(3): 954-959.
No Suggested Reading articles found!