PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Exploration of microscopic physical processes of Z-pinch by a modified electrostatic direct implicit particle-in-cell algorithm |
Kaixuan Li(李开轩), Cheng Ning(宁成)†, Ye Dong(董烨)‡, and Chuang Xue(薛创) |
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract For investigating efficiently the stagnation kinetic-process of Z-pinch, we develop a novel modified electrostatic implicit particle-in-cell algorithm in radial one-dimension for Z-pinch simulation in which a small-angle cumulative binary collision algorithm is used. In our algorithm, the electric field in $z$-direction is solved by a parallel electrode-plate model, the azimuthal magnetic field is obtained by Ampere's law, and the term for charged particle gyromotion is approximated by the cross product of the averaged velocity and magnetic field. In simulation results of 2 MA deuterium plasma shell Z-pinch, the mass-center implosion trajectory agrees generally with that obtained by one-dimensional MHD simulation, and the plasma current also closely aligns with the external current. The phase space diagrams and radial-velocity probability distributions of ions and electrons are obtained. The main kinetic characteristic of electron motion is thermal equilibrium and oscillation, which should be oscillated around the ions, while that of ion motion is implosion inwards. In the region of stagnation radius, the radial-velocity probability distribution of ions transits from the non-equilibrium to equilibrium state with the current increasing, while of electrons is basically the equilibrium state. When the initial ion density and current peak are not high enough, the ions may not reach their thermal equilibrium state through collisions even in its stagnation phase.
|
Received: 25 April 2024
Revised: 26 May 2024
Accepted manuscript online: 07 June 2024
|
PACS:
|
52.58.Lq
|
(Z-pinches, plasma focus, and other pinch devices)
|
|
52.65.Rr
|
(Particle-in-cell method)
|
|
52.50.Sw
|
(Plasma heating by microwaves; ECR, LH, collisional heating)
|
|
52.20.Hv
|
(Atomic, molecular, ion, and heavy-particle collisions)
|
|
Fund: This research was partly supported by the National Natural Science Foundation of China (Grant Nos. 11675025 and 11135007), and the Innovation Project of China Academy of Engineering Physics (Grant No. CX2019030). |
Corresponding Authors:
Cheng Ning, Ye Dong
E-mail: ning_cheng@iapcm.ac.cn;dong_ye@iapcm.ac.cn
|
Cite this article:
Kaixuan Li(李开轩), Cheng Ning(宁成), Ye Dong(董烨), and Chuang Xue(薛创) Exploration of microscopic physical processes of Z-pinch by a modified electrostatic direct implicit particle-in-cell algorithm 2024 Chin. Phys. B 33 095201
|
[1] Spielman R B, Hanson D L, Palmer M A, Matzen M K, Hussey T W and Peek J M 1985 J. Appl. Phys. 57 830 [2] Coverdale C A, Deeney C, Velikovich A L, Clark R W, Chong Y K, Davis J, Chittenden J, Ruiz C L, Cooper G W and Nelson A J 2007 Phys. Plasmas 14 022706 [3] Giuliani J L and Commisso R J 2015 IEEE Trans. Plasma Sci. 43 2385 [4] Spielman R B, Deeney C, Chandler G A, Douglas M R, Fehl D L, Matzen M K, McDaniel D H, Nash T J, Porter J L and Sanford T W L 1998 Phys. Plasmas 5 2105 [5] Deeney C, Douglas M R, Spielman R B, Nash T J, Peterson D L, L’Eplattenier P, Chandler G A, Seamen J F and Struve K W 1998 Phys. Rev. Lett. 81 4883 [6] Slutz S A, Bailey J E, Chandler G A, Bennett G R, Cooper G, Lash J S, Lazier S, Lake P, Lemke R W, Mehlhorn T A, Nash T J, Nielson D S, McGurn J, Moore T C, Ruiz C L, Schroen D G, Torres J, Varnum W and Vesey R A 2003 Phys. Plasmas 10 1875 [7] Ning C and Chen Z 2018 IEEE Trans. Plasma Sci. 46 3794 [8] Wang X, Wang G, Sun S, Xiao D, Ding N, Mao C and Shu X 2022 Chin. Phys. B 31 025203 [9] Maron Y 2020 Phys. Plasmas 27 060901 [10] Klir D, Kubes P, Paduch M, Pisarczyk T, Chodukowski T, Scholz M, Kalinowska Z, Bienkowska B, Karpinski L and Kortanek J 2011 Plasma Phys. Control. Fusion 54 015001 [11] Fan Y, Li Z H, Yi Q, Jiang S Q, Xue F B, Yang J L, Xu R K and Jin Y J 2010 Chin. Phys. B 19 075204 [12] Kroupp E, Osin D, Starobinets A, Fisher V, Bernshtam V, Maron Y, Uschmann I, Förster E, Fisher A and Deeney C 2007 Phys. Rev. Lett. 98 115001 [13] Giuliani J L, Thornhill J W, Kroupp E, Osin D, Maron Y, Dasgupta A, Apruzese J P, Velikovich A L, Chong Y K, Starobinets A, Fisher V, Zarnitsky Yu, Bernshtam V, Fisher A, Mehlhorn T A and Deeney C 2014 Phys. Plasmas 21 031209 [14] Haines M G, LePell P D, Coverdale C A, Jones B, Deeney C and Apruzese J P 2006 Phys. Rev. Lett. 96 075003 [15] Wong K L, Springer P T, Hammer J H, Iglesias C A, Osterheld A L, Foord M E, Bruns H C, Emig J A and Deeney C 1998 Phys. Rev. Lett. 80 2334 [16] Kroupp E, Osin D, Starobinets A, Fisher V, Bernshtam V, Weingarten L, Maron Y, Uschmann I, Förster E, Fisher A, Cuneo M E, Deeney C and Giuliani J L 2011 Phys. Rev. Lett. 107 105001 [17] Baksht R B, Oreshkin V I, Rousskikh A G and Zhigalin A S 2018 Plasma Phys. Control. Fusion 60 035015 [18] Welch D R, Rose D V, Clark R E, Mostrom C B, Stygar W A and Leeper R J 2009 Phys. Rev. Lett. 103 255002 [19] Welch D R, Bennett N, Genoni T C, Rose D V, Thoma C, Miller C and Stygar W A 2019 Phys. Rev. Accel. Beams 22 070401 [20] Angus J R, Link A, Friedman A, Ghosh D and Johnson J D 2022 J. Comput. Phys. 456 111030 [21] Offermann D T, Welch D R, Rose D V, Thoma C, Clark R E, Mostrom C B, Schmidt A E W and Link A J 2016 Phys. Rev. Lett. 116 195001 [22] Welch D R, Rose D V, Thoma C, Clark R E, Mostrom C B, Stygar W A and Leeper R J 2011 Phys. Plasmas 18 056303 [23] Welch D R, Rose D V, Thoma C, Clark R E, Mostrom C B, Stygar W A and Leeper R J 2010 Phys. Plasmas 17 072702 [24] Wang W M, Gibbon P, Sheng Z M and Li Y T 2015 Phys. Rev. Lett. 114 015001 [25] Wang W M, Gibbon P, Sheng Z M and Li Y T 2015 Phys. Rev. E 91 013101 [26] Cohen B I, Langdon A B and Friedman A 1982 J. Comput. Phys. 46 15 [27] Welch D R, Rose D V, Clark R E, Genoni T C and Hughes T P 2004 Comput. Phys. Commun. 164 183 [28] Langdon A B 1979 J. Comput. Phys. 30 202 [29] Nanbu K 1997 Phys. Rev. E 55 4642 [30] Ning C, Sun S K, Xiao D L, Zhang Y, Ding N, Huang J, Xue C and Shu X J 2010 Phys. Plasmas 17 062703 [31] Ning C, Zhang X Q, Zhang Y, Sun S K, Xue C, Feng Z X and Li B W 2018 Chin. Phys. B 27 025207 [32] Mosher D, Weber B V, Moosman B, Commisso R J, Coleman P, Waisman E, Sze H, Song Y, Parks D, Steen P, Levine J, Failor B and Fisher A 2001 Laser Part. Beams 19 579 [33] Takizuka T and Abe H 1977 J. Comput. Phys. 25 205 [34] Angus J R, Link A J and Schmidt A E 2021 Phys. Plasmas 28 010701 [35] Sherlock M, Chittenden J P, Lebedev S V and Haines M G 2004 Phys. Plasmas 11 1609 [36] Ryutov D D 2015 IEEE Trans. Plasma Sci. 43 2363 [37] Welch D R, Rose D V, Clark R E, Genoni T C and Hughes T P 2004 Comput. Phys. Commun. 164 183 [38] Welch D R, Rose D V, Cuneo M E, Campbell R B and Mehlhorn T A 2006 Phys. Plasmas 13 063105 [39] Tan H, Huang T, Ji P, Zhou M, Zhuge L and Wu X 2023 Chin. Phys. B 32 125204 [40] Lapenta G 2017 J. Comput. Phys. 334 349 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|