Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 095201    DOI: 10.1088/1674-1056/ad553a
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Exploration of microscopic physical processes of Z-pinch by a modified electrostatic direct implicit particle-in-cell algorithm

Kaixuan Li(李开轩), Cheng Ning(宁成)†, Ye Dong(董烨)‡, and Chuang Xue(薛创)
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  For investigating efficiently the stagnation kinetic-process of Z-pinch, we develop a novel modified electrostatic implicit particle-in-cell algorithm in radial one-dimension for Z-pinch simulation in which a small-angle cumulative binary collision algorithm is used. In our algorithm, the electric field in $z$-direction is solved by a parallel electrode-plate model, the azimuthal magnetic field is obtained by Ampere's law, and the term for charged particle gyromotion is approximated by the cross product of the averaged velocity and magnetic field. In simulation results of 2 MA deuterium plasma shell Z-pinch, the mass-center implosion trajectory agrees generally with that obtained by one-dimensional MHD simulation, and the plasma current also closely aligns with the external current. The phase space diagrams and radial-velocity probability distributions of ions and electrons are obtained. The main kinetic characteristic of electron motion is thermal equilibrium and oscillation, which should be oscillated around the ions, while that of ion motion is implosion inwards. In the region of stagnation radius, the radial-velocity probability distribution of ions transits from the non-equilibrium to equilibrium state with the current increasing, while of electrons is basically the equilibrium state. When the initial ion density and current peak are not high enough, the ions may not reach their thermal equilibrium state through collisions even in its stagnation phase.
Keywords:  Z-pinch      particle-in-cell      ion heating      charged particle collisions  
Received:  25 April 2024      Revised:  26 May 2024      Accepted manuscript online:  07 June 2024
PACS:  52.58.Lq (Z-pinches, plasma focus, and other pinch devices)  
  52.65.Rr (Particle-in-cell method)  
  52.50.Sw (Plasma heating by microwaves; ECR, LH, collisional heating)  
  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
Fund: This research was partly supported by the National Natural Science Foundation of China (Grant Nos. 11675025 and 11135007), and the Innovation Project of China Academy of Engineering Physics (Grant No. CX2019030).
Corresponding Authors:  Cheng Ning, Ye Dong     E-mail:  ning_cheng@iapcm.ac.cn;dong_ye@iapcm.ac.cn

Cite this article: 

Kaixuan Li(李开轩), Cheng Ning(宁成), Ye Dong(董烨), and Chuang Xue(薛创) Exploration of microscopic physical processes of Z-pinch by a modified electrostatic direct implicit particle-in-cell algorithm 2024 Chin. Phys. B 33 095201

[1] Spielman R B, Hanson D L, Palmer M A, Matzen M K, Hussey T W and Peek J M 1985 J. Appl. Phys. 57 830
[2] Coverdale C A, Deeney C, Velikovich A L, Clark R W, Chong Y K, Davis J, Chittenden J, Ruiz C L, Cooper G W and Nelson A J 2007 Phys. Plasmas 14 022706
[3] Giuliani J L and Commisso R J 2015 IEEE Trans. Plasma Sci. 43 2385
[4] Spielman R B, Deeney C, Chandler G A, Douglas M R, Fehl D L, Matzen M K, McDaniel D H, Nash T J, Porter J L and Sanford T W L 1998 Phys. Plasmas 5 2105
[5] Deeney C, Douglas M R, Spielman R B, Nash T J, Peterson D L, L’Eplattenier P, Chandler G A, Seamen J F and Struve K W 1998 Phys. Rev. Lett. 81 4883
[6] Slutz S A, Bailey J E, Chandler G A, Bennett G R, Cooper G, Lash J S, Lazier S, Lake P, Lemke R W, Mehlhorn T A, Nash T J, Nielson D S, McGurn J, Moore T C, Ruiz C L, Schroen D G, Torres J, Varnum W and Vesey R A 2003 Phys. Plasmas 10 1875
[7] Ning C and Chen Z 2018 IEEE Trans. Plasma Sci. 46 3794
[8] Wang X, Wang G, Sun S, Xiao D, Ding N, Mao C and Shu X 2022 Chin. Phys. B 31 025203
[9] Maron Y 2020 Phys. Plasmas 27 060901
[10] Klir D, Kubes P, Paduch M, Pisarczyk T, Chodukowski T, Scholz M, Kalinowska Z, Bienkowska B, Karpinski L and Kortanek J 2011 Plasma Phys. Control. Fusion 54 015001
[11] Fan Y, Li Z H, Yi Q, Jiang S Q, Xue F B, Yang J L, Xu R K and Jin Y J 2010 Chin. Phys. B 19 075204
[12] Kroupp E, Osin D, Starobinets A, Fisher V, Bernshtam V, Maron Y, Uschmann I, Förster E, Fisher A and Deeney C 2007 Phys. Rev. Lett. 98 115001
[13] Giuliani J L, Thornhill J W, Kroupp E, Osin D, Maron Y, Dasgupta A, Apruzese J P, Velikovich A L, Chong Y K, Starobinets A, Fisher V, Zarnitsky Yu, Bernshtam V, Fisher A, Mehlhorn T A and Deeney C 2014 Phys. Plasmas 21 031209
[14] Haines M G, LePell P D, Coverdale C A, Jones B, Deeney C and Apruzese J P 2006 Phys. Rev. Lett. 96 075003
[15] Wong K L, Springer P T, Hammer J H, Iglesias C A, Osterheld A L, Foord M E, Bruns H C, Emig J A and Deeney C 1998 Phys. Rev. Lett. 80 2334
[16] Kroupp E, Osin D, Starobinets A, Fisher V, Bernshtam V, Weingarten L, Maron Y, Uschmann I, Förster E, Fisher A, Cuneo M E, Deeney C and Giuliani J L 2011 Phys. Rev. Lett. 107 105001
[17] Baksht R B, Oreshkin V I, Rousskikh A G and Zhigalin A S 2018 Plasma Phys. Control. Fusion 60 035015
[18] Welch D R, Rose D V, Clark R E, Mostrom C B, Stygar W A and Leeper R J 2009 Phys. Rev. Lett. 103 255002
[19] Welch D R, Bennett N, Genoni T C, Rose D V, Thoma C, Miller C and Stygar W A 2019 Phys. Rev. Accel. Beams 22 070401
[20] Angus J R, Link A, Friedman A, Ghosh D and Johnson J D 2022 J. Comput. Phys. 456 111030
[21] Offermann D T, Welch D R, Rose D V, Thoma C, Clark R E, Mostrom C B, Schmidt A E W and Link A J 2016 Phys. Rev. Lett. 116 195001
[22] Welch D R, Rose D V, Thoma C, Clark R E, Mostrom C B, Stygar W A and Leeper R J 2011 Phys. Plasmas 18 056303
[23] Welch D R, Rose D V, Thoma C, Clark R E, Mostrom C B, Stygar W A and Leeper R J 2010 Phys. Plasmas 17 072702
[24] Wang W M, Gibbon P, Sheng Z M and Li Y T 2015 Phys. Rev. Lett. 114 015001
[25] Wang W M, Gibbon P, Sheng Z M and Li Y T 2015 Phys. Rev. E 91 013101
[26] Cohen B I, Langdon A B and Friedman A 1982 J. Comput. Phys. 46 15
[27] Welch D R, Rose D V, Clark R E, Genoni T C and Hughes T P 2004 Comput. Phys. Commun. 164 183
[28] Langdon A B 1979 J. Comput. Phys. 30 202
[29] Nanbu K 1997 Phys. Rev. E 55 4642
[30] Ning C, Sun S K, Xiao D L, Zhang Y, Ding N, Huang J, Xue C and Shu X J 2010 Phys. Plasmas 17 062703
[31] Ning C, Zhang X Q, Zhang Y, Sun S K, Xue C, Feng Z X and Li B W 2018 Chin. Phys. B 27 025207
[32] Mosher D, Weber B V, Moosman B, Commisso R J, Coleman P, Waisman E, Sze H, Song Y, Parks D, Steen P, Levine J, Failor B and Fisher A 2001 Laser Part. Beams 19 579
[33] Takizuka T and Abe H 1977 J. Comput. Phys. 25 205
[34] Angus J R, Link A J and Schmidt A E 2021 Phys. Plasmas 28 010701
[35] Sherlock M, Chittenden J P, Lebedev S V and Haines M G 2004 Phys. Plasmas 11 1609
[36] Ryutov D D 2015 IEEE Trans. Plasma Sci. 43 2363
[37] Welch D R, Rose D V, Clark R E, Genoni T C and Hughes T P 2004 Comput. Phys. Commun. 164 183
[38] Welch D R, Rose D V, Cuneo M E, Campbell R B and Mehlhorn T A 2006 Phys. Plasmas 13 063105
[39] Tan H, Huang T, Ji P, Zhou M, Zhuge L and Wu X 2023 Chin. Phys. B 32 125204
[40] Lapenta G 2017 J. Comput. Phys. 334 349
[1] Hollow cathode effect in radio frequency hollow electrode discharge in argon
Liu-Liang He(贺柳良), Feng He(何锋), and Ji-Ting Ouyang(欧阳吉庭). Chin. Phys. B, 2024, 33(3): 035203.
[2] Differences between two methods to derive a nonlinear Schrödinger equation and their application scopes
Yu-Xi Chen(陈羽西), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2024, 33(2): 025203.
[3] Growth mechanism and characteristics of electron drift instability in Hall thruster with different propellant types
Long Chen(陈龙), Zi-Chen Kan(阚子晨), Wei-Fu Gao(高维富), Ping Duan(段萍), Jun-Yu Chen(陈俊宇), Cong-Qi Tan(檀聪琦), and Zuo-Jun Cui(崔作君). Chin. Phys. B, 2024, 33(1): 015203.
[4] Theoretical analyses on the one-dimensional charged particle transport in a decaying plasma under an electrostatic field
Yao-Ting Wang(汪耀庭), Xin-Li Sun(孙鑫礼), Lan-Yue Luo(罗岚月), Zi-Ming Zhang(张子明), He-Ping Li(李和平), Dong-Jun Jiang(姜东君), and Ming-Sheng Zhou(周明胜). Chin. Phys. B, 2023, 32(9): 095201.
[5] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[6] Speeding-up direct implicit particle-in-cell simulations in bounded plasma by obtaining future electric field through explicitly propulsion of particles
Haiyun Tan(谭海云), Tianyuan Huang(黄天源), Peiyu Ji(季佩宇), Mingjie Zhou(周铭杰), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(12): 125204.
[7] Efficient ion acceleration driven by a Laguerre-Gaussian laser in near-critical-density plasma
Jia-Xiang Gao(高嘉祥), Meng Liu(刘梦), and Wei-Min Wang(王伟民). Chin. Phys. B, 2023, 32(10): 105202.
[8] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[9] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[10] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[11] Discharge characteristic of very high frequency capacitively coupled argon plasma
Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华). Chin. Phys. B, 2021, 30(9): 095204.
[12] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[13] Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum
Shi-Jia Chen(陈诗佳), Yan-Yun Ma(马燕云), Fu-Yuan Wu(吴福源), Xiao-Hu Yang(杨晓虎), Yun Yuan(袁赟), Ye Cui(崔野), and Rafael Ramis. Chin. Phys. B, 2021, 30(11): 115201.
[14] Physical properties of relativistic electron beam during long-range propagation in space plasma environment
Bi-Xi Xue(薛碧曦), Jian-Hong Hao(郝建红), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2021, 30(10): 104103.
[15] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
No Suggested Reading articles found!