Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 090502    DOI: 10.1088/1674-1056/ad5d92
GENERAL Prev   Next  

Dynamical distribution of continuous service time model involving non-Maxwellian collision kernel and value functions

Minfang Zhao(赵敏芳)1,2, Lingting Kong(孔令婷)3, Miao Liu(刘淼)1,2,†, and Shaoyong Lai(赖绍永)3
1 School of Mathematics and Statistics, Yili Normal University, Yining 835000, China;
2 Institute of Applied Mathematics, Yili Normal University, Yining 835000, China;
3 School of Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China
Abstract  The distribution of continuous service time in call centers is investigated. A non-Maxwellian collision kernel combining two different value functions in the interaction rule are used to describe the evolution of continuous service time, respectively. Using the statistical mechanical and asymptotic limit methods, Fokker-Planck equations are derived from the corresponding Boltzmann-type equations with non-Maxwellian collision kernels. The steady-state solutions of the Fokker-Planck equation are obtained in exact form. Numerical experiments are provided to support our results under different parameters.
Keywords:  kinetic theory      service time      Fokker-Planck equation      value function  
Received:  02 April 2024      Revised:  01 July 2024      Accepted manuscript online:  02 July 2024
PACS:  05.20.Dd (Kinetic theory)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.10.Gg (Stochastic analysis methods)  
  47.45.Ab (Kinetic theory of gases)  
Fund: Project supported by the Special Project of Yili Normal University (to improve comprehensive strength of disciplines) (Grant No. 22XKZZ18), Yili Normal University Scientific Research Innovation Team Plan Project (Grant No. CXZK2021015), and Yili Science and Technology Planning Project (Grant No. YZ2022B036).
Corresponding Authors:  Miao Liu     E-mail:  lium76@163.com

Cite this article: 

Minfang Zhao(赵敏芳), Lingting Kong(孔令婷), Miao Liu(刘淼), and Shaoyong Lai(赖绍永) Dynamical distribution of continuous service time model involving non-Maxwellian collision kernel and value functions 2024 Chin. Phys. B 33 090502

[1] Brown L, Gans N, Mandelbaum A, Sakov A, Shen H, Zeltyn S and Zhao L 2005 J. Am. Stat. Assoc. 100 36
[2] Excoffier M, Gicquel C and Jouini O 2016 Comput. Ind. Eng. 96 16
[3] Nazarov A, Moiseev A and Moiseeva S 2021 Mathematics 9 2877
[4] Garnett O, Mandelbaum A and Reiman M 2002 Manuf. Serv. Oper. Manag. 4208
[5] Stepanov S and Stepanov M 2014 Autom. Remote. Control. 75 1936
[6] Aksin Z, Armony M and Mehrotra V 2007 Prod. Oper. Manag. 16 665
[7] Gualandi S and Toscani G 2019 Math. Mod. Methods Appl. Sci. 29 717
[8] Gualandi S and Toscani G 2018 Math. Mod. Methods Appl. Sci. 28 1513
[9] Kahneman D and Tversky A 1979 Econometrica 47 263
[10] Kahneman D and Tversky A2000 Choices, Values, and Frames, (Cambridge: Cambridge University Press)
[11] Hu C and Chen H 2023 Chin. Phys. B 32 088901
[12] Naldi G, Pareschi L and Toscani G 2010 Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences, (Boston: Springer Science & Business Media)
[13] Burini D, Lillo S D and Gibelli L 2016 Phys. Life Rev. 16 123
[14] Du W, Cao X, Yang H and Hu M 2010 Chin. Phys. B 19 010204
[15] Quevedoa D and Quimbay C 2021 Eur. Phys. J. B 93 1
[16] Zhou X and Lai S 2023 Eur. Phys. J. B 96 73
[17] Cordier S, Pareschi L and Toscani G 2005 J. Stat. Phys. 120 253
[18] Pareschi L and Toscani G2014 Interacting Multiagent Systems: Kinetic equations and Monte Carlo Methods, (Oxford: Oxford University Press)
[19] Toscani G, Tosin A and Zanella M 2019 Phys. Rev. E 100 012308
[20] Dimarco G and Toscani G 2020 Math. Mod. Methods Appl. Sci. 30 2229
[21] Furioli G, Pulvirenti A, Terraneo E and Toscani G 2017 Methods Appl. Sci. 27 115
[1] A wealth distribution model with a non-Maxwellian collision kernel
Jun Meng(孟俊), Xia Zhou(周霞), and Shaoyong Lai(赖绍永). Chin. Phys. B, 2024, 33(7): 070501.
[2] A kinetic description of the impact of agent competence and psychological factors on investment decision-making
Chunhua Hu(胡春华) and Hongjing Chen(陈弘婧). Chin. Phys. B, 2023, 32(8): 088901.
[3] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[4] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[5] ISSDE: A Monte Carlo implicit simulation code based on Stratonovich SDE approach of Coulomb collision
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2021, 30(9): 095201.
[6] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[7] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
[8] Time evolution of information entropy for a stochastic system with double singularities driven by quasimonochromatic noise
Guo Yong-Feng (郭永峰), Tan Jian-Guo (谭建国). Chin. Phys. B, 2012, 21(12): 120501.
[9] Study on tapered crossed subwavelength gratings by Fourier modal method
Chen Xi(陈熙), Zhong Yuan(钟源), Wang Qing(王青), Zhang Ye-Jin(张冶金), and Chen Liang-Hui(陈良惠). Chin. Phys. B, 2010, 19(10): 104101.
[10] RF electric field penetration and power deposition into nonequilibrium planar-type inductively coupled plasmas
Mao Ming(毛明), Wang Shuai(王帅), Dai Zhong-Ling(戴忠玲), and Wang You-Nian(王友年). Chin. Phys. B, 2007, 16(7): 2044-2050.
[11] Thermal conductivity of dielectric nanowires with different cross-section shapes
Gu Xiao-Kun(顾骁坤) and Cao Bing-Yang(曹炳阳). Chin. Phys. B, 2007, 16(12): 3777-3782.
[12] Fokker-planck study of tokamak electron cyclotron resonance heating
Shi Bing-Ren (石秉仁), Long Yong-Xing (龙永兴), Dong Jia-Qi (董家齐), Li Wen-Zhong (郦文忠), Jiao Yi-Ming (焦一鸣), Wang Ai-Ke (王爱科). Chin. Phys. B, 2003, 12(11): 1251-1256.
No Suggested Reading articles found!