PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Discharge mode and particle transport in radio frequency capacitively coupled Ar/O2 plasma discharges |
Zhuo-Yao Gao(高卓瑶), Wan Dong(董婉), Chong-Biao Tian(田崇彪), Xing-Zhao Jiang(蒋星照), Zhong-Ling Dai(戴忠玲), and Yuan-Hong Song(宋远红)† |
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract Simulations are conducted on capacitively coupled Ar/O$_{2}$ mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo (MC) model. The research explores the impact of different O$_{2}$ ratio and pressures on the discharge characteristics of Ar/O$_{2}$ plasma. At a fixed Ar/O$_{2}$ gas ratio, with the increasing pressure, higher ion densities, as well as a slight increase in electron density in the bulk region can be observed. The discharge remains dominated by the drift-ambipolar (DA) mode, and the flux of O($^{3}$P) at the electrode increases with the increasing pressure due to higher background gas density, while the fluxes of O($^{1}$D) and Ar$^{\ast }$ decrease due to the pronounced loss rate. With the increasing proportion of O$_{2}$, a change in the dominant discharge mode from $\alpha $ mode to DA mode can be detected, and the O$_{2}$-associated charged particle densities are significantly increased. However, Ar$^{+}$ density shows a trend of increasing and then decreasing, while for neutral fluxes at the electrode, Ar$^{\ast }$ flux decreases, and O($^{3}$P) flux increases with the reduced Ar gas proportion, while trends in O($^{1}$D) flux show slight differences. The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties. Hopefully, more comprehensive understanding of Ar/O$_{2}$ discharge characteristics in this work will provide a valuable reference for the industry.
|
Received: 31 March 2024
Revised: 27 June 2024
Accepted manuscript online: 01 July 2024
|
PACS:
|
52.65.-y
|
(Plasma simulation)
|
|
52.65.Ww
|
(Hybrid methods)
|
|
52.80.Pi
|
(High-frequency and RF discharges)
|
|
52.27.Cm
|
(Multicomponent and negative-ion plasmas)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12020101005, 11975067, and 12347131) and the Fundamental Research Funds for the Central Universities (Grant No. DUT24BS069). |
Corresponding Authors:
Yuan-Hong Song
E-mail: songyh@dlut.edu.cn
|
Cite this article:
Zhuo-Yao Gao(高卓瑶), Wan Dong(董婉), Chong-Biao Tian(田崇彪), Xing-Zhao Jiang(蒋星照), Zhong-Ling Dai(戴忠玲), and Yuan-Hong Song(宋远红) Discharge mode and particle transport in radio frequency capacitively coupled Ar/O2 plasma discharges 2024 Chin. Phys. B 33 095203
|
[1] Makabe T and Petrović Z 2006 Plasma Electronics: Applications in Microelectronic Device Fabrication (London: Taylor and Francis) pp. 3-9 [2] Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasmas (Cambridge: Cambridge University Press) [3] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (New York: WileyInterscience) pp. 1-750 [4] Kushner M J 1993 J. Appl. Phys. 74 6538 [5] Dong W, Xu H W, Dai Z L, Song Y H and Wang Y N 2021 Acta Phys. Sin. 70 095213 (in Chinese) [6] Shinoda K, Miyoshi N, Kobayashi H, Izawa M, Ishikawa K and Hori M 2019 J. Phys. D: Appl. Phys. 52 475106 [7] Jung H, Oh I, Yoon C M, Park B E, Lee S, Kwon O, Lee W, Kwon S, Kim W H and Kim H 2018 ACS Appl. Mater. Interfaces 46 40286 [8] Huang S, Huard C, Shim S, Nam S K, Song I C, Lu S and Kushner M J 2019 J. Vac. Sci. Technol. A 37 031304 [9] Izawa M, Negishi N, Yokogawa K E and Momonoi Y 2007 Jpn. J. Appl. Phys. 46 7870 [10] Qu C, Sakiyama Y, Agarwal P and Kushner M J 2021 J. Vac. Sci. Technol. A 39 052403 [11] Xu X., Li L, Wang S, Zhao L and Ye T 2007 Plasma Sources Sci. Technol. 16 372 [12] Kitajima T, Minowa H and Nakano T 2020 J. Phys. Commun. 4 095013 [13] Nikolić M, Sepulveda I, Gonzalez C, Khogeer N and Fernandez- Monteith M 2021 J. Phys. D: Appl. Phys. 54 275203 [14] Yang Y, Tang C S, Zhao Y F, Yu Y Q and Xin Y 2017 Acta Phys. Sin. 66 185202 (in Chinese) [15] Krüger F, Lee H, Nam S K and Kushner M J 2021 Plasma Sources Sci. Technol. 30 085002 [16] Zhao Y, Zhou Y, Ma X, Cao L, Zheng F and Xin Y 2019 Phys. Plasmas 26 033502 [17] Greb A, Niemi K, O’Connell D and Gans T 2013 Appl. Phys. Lett. 103 244101 [18] Gudmundsson J T and Snorrason D I 2017 J. Appl. Phys. 122 193302 [19] Gudmundsson J T and Ventéjou B 2015 J. Appl. Phys. 118 153302 [20] Derzsi A, Bruneau B, Gibson A R, Johnson E, O’Connell D, Gans T, Booth J P and Donkó Z 2017 Plasma Sources Sci. Technol. 26 034002 [21] Wang L, Wen D Q, Hartmann P, Donkó Z, Derzsi A, Wang X F, Song Y H, Wang Y N and Schulze J 2020 Plasma Sources Sci. Technol. 29 105004 [22] Wang L, Wen D Q, Zhang Q Z, Song Y H, Zhang Y R and Wang Y N 2019 Plasma Sources Sci. Technol. 28 055007 [23] Lee B J, Lee B J, Efremov A, Yang J W and Kwon K H 2016 J. Nanosci. Nanotechnol. 16 11201 [24] Lee B J, Efremov A, Nam Y and Kwon K H 2020 Plasma Chem. Plasma Process. 40 1365 [25] Tanimura T, Watanabe Y, Sato Y, Kabe Y and Hirota Y 2013 J. Appl. Phys. 113 064102 [26] Kitajima T, Nakano T and Makabe T 2008 J. Vac. Sci. Technol. A 26 1038 [27] Kitajima T, Nakano T and Makabe T 2006 Appl. Phys. Lett. 88 091501 [28] Gogolides E, Vauvert P, Kokkoris G, Turban G and Boudouvis A G 2000 J. Appl. Phys. 88 5570 [29] Fang G Y, Xu L N, Cao Y Q, Wang L G, Wu D and Li A D 2015 Chem. Commun. 51 1341 [30] Kaspar T, Tuan A, Tonkyn R, Hess W P, Rogers J W and Ono Y 2003 J. Vac. Sci. Technol. B 21 895 [31] Wen Y Y, Zhang Y R, Jiang G, Song Y H and Wang Y N 2019 AIP Adv. 9 055019 [32] Singh H, Coburn J W and Graves D B 2000 J. Vac. Sci. Technol. A 18 2680 [33] Kushner M J 1993 J. Appl. Phys. 74 6538 [34] Bhoj A N and Kushner M J 2007 J. Phys. D: Appl. Phys. 40 6953 [35] Sharpless R L and Slanger T G 1989 J. Chem. Phys. 91 7947 [36] Thorsteinsson E G and Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 055008 [37] Dong W, Zhang Y F, Schulze J and Song Y H 2024 Plasma Sources Sci. Technol. 33 025020 [38] Wang X F, Jia W Z, Song Y H, Zhang Y Y, Dai Z L and Wang Y N 2017 Phys. Plasmas 24 113503 [39] Dong W, Zhang Y F, Dai Z L, Schulze J, Song Y H and Wang Y N 2022 Plasma Sources Sci. Technol. 31 025006 [40] Zhao S X, Gao F, Wang Y N and Bogaerts A 2012 Plasma Sources Sci. Technol. 21 025008 [41] Tinck S, Boullart W and Bogaerts A 2009 J. Phys. D: Appl. Phys. 42 095204 [42] Derzsi A, Hartmann P, Vass M, Horváth B, Gyulai M, Korolov I, Schulze J and Donkó Z 2022 Plasma Sources Sci. Technol. 31 085009 [43] Krishnakumar E and Srivastava S K 1992 Int. J. Mass Spectrom. Ion Process. 113 1 [44] Gudmundsson J T and Lieberman M A 2015 Plasma Sources Sci. Technol. 24 035016 [45] Vasenkov A V, Li X, Oehrlein G S and Kushner M J 2004 J. Vac. Sci. Technol. A 22 511 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|