Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 040502    DOI: 10.1088/1674-1056/ad102e
GENERAL Prev   Next  

Influencer identification of dynamical networks based on an information entropy dimension reduction method

Dong-Li Duan(段东立)1,†, Si-Yuan Ji(纪思源)1, and Zi-Wei Yuan(袁紫薇)2
1 School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710311, China;
2 School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks, defense, repair and control. Traditional methods usually begin from the centrality, node location or the impact on the largest connected component after node destruction, mainly based on the network structure. However, these algorithms do not consider network state changes. We applied a model that combines a random connectivity matrix and minimal low-dimensional structures to represent network connectivity. By using mean field theory and information entropy to calculate node activity, we calculated the overlap between the random parts and fixed low-dimensional parts to quantify the influence of node impact on network state changes and ranked them by importance. We applied this algorithm and the proposed importance algorithm to the overall analysis and stratified analysis of the C. elegans neural network. We observed a change in the critical entropy of the network state and by utilizing the proposed method we can calculate the nodes that indirectly affect muscle cells through neural layers.
Keywords:  dynamical networks      network influencer      low-dimensional dynamics      network disintegration  
Received:  11 September 2023      Revised:  17 November 2023      Accepted manuscript online:  28 November 2023
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  89.75.Fb (Structures and organization in complex systems)  
  87.55.kd (Algorithms)  
  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 72071153 and 72231008), Laboratory of Science and Technology on Integrated Logistics Support Foundation (Grant No. 6142003190102), and the Natural Science Foundation of Shannxi Province (Grant No. 2020JM- 486).
Corresponding Authors:  Dong-Li Duan     E-mail:  mineduan@163.cn

Cite this article: 

Dong-Li Duan(段东立), Si-Yuan Ji(纪思源), and Zi-Wei Yuan(袁紫薇) Influencer identification of dynamical networks based on an information entropy dimension reduction method 2024 Chin. Phys. B 33 040502

[1] Strogatz S H 2001 Nature 410 268
[2] Latora V, Nicosia V and Russo G 2017 Complex networks:principles, methods and applications (Cambridge University Press) pp. 679——692
[3] Erdȍs P and Rényi A 1961 Acta Mathematica Hungarica 12 261
[4] Janson S, Rucinski A and Luczak T 2011 Random graphs. (John Wiley & Sons) pp. 233——270
[5] Watts D J and Strogatz S H 1998 Nature 393 440
[6] Sompolinsky H, Crisanti A and Sommers H J 1988 Safety Science 61 259
[7] Brunel N 2000 Journal of Computational Neuroscience 8 183
[8] Van V C and Sompolinsky H 1996 Science 274 1724
[9] Williamson R C, Cowley B R, Litwin-Kumar A, Doiron B, Kohn A, Smith M A and Yu B M 2016 PLoS Computational Biology 12 e1005141
[10] Wang X J 2002 Neuron 36 955
[11] Amit D J and Brunel N 197 Phys. Rev. Lett. 7 237
[12] Litwin K A and Doiron B 2012 Nature Neuroscience 15 1498
[13] Harris K D and Mrsic F T D 2013 Nature 503 51
[14] Rigotti M, Barak O, Warden M R, Wang X J, Daw N D, Miller E K and Fusi S 2013 Nature 497 585
[15] Mante V, Sussillo D, Shenoy K V and Newsome W T 2013 Nature 503 78
[16] Churchland M M and Shenoy K V 2007 Journal of Neurophysiology 97 4235
[17] Mastrogiuseppe F and Ostojic S 2018 Neuron 99 609
[18] Pei S, Teng X, Shaman J, Morone F and Makse H A 2016 arXiv:0809.0872v1
[19] Rényi A 1961 Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, June20——July 30, 1961, California, US, pp. 547——562
[20] Kapur J N and Kesavan H K 1992 Entropy optimization principles and their applications (Springer) pp. 3——20
[21] Gray R M 2011 Entropy and information theory (Springer Science & Business Media) pp 61——59
[22] Dehmer M 2008 Applied Mathematics and Computation 201 81
[23] Omar Y M and Plapper P 2020 Entropy 22 1417
[24] Randel N, Shahidi R, Veraszto C, Bezares C L A, Schmidt S and Jekely G 2015 Elife 4 e08069
[25] Kornfeld J, Januszewski M, Schubert P, Jain V, Denk W and Fee M S 2020 BioRxiv 2020 2
[26] Schneider M C M, Bodor A L, Collman F and Brittain D 2020 BioRxiv 2020 3
[27] Aicher C, Jacobs A Z and Clauset A 2015 Journal of Complex Networks 3 221
[28] Rajan K, Abbott L F and Sompolinsky H 2008 Phys. Rev. E 2010 011903
[29] Schwing A G and Urtasun R 2015 arXiv:1503.02351
[30] Bollobás B 1998 Random graphs (Springer) pp. 34——50
[31] Barabási A and Albert R 1999 Science 286 509
[32] Eash R, Chon K, Lee Y and Boyce D 1979 Transportation Research 13 243
[33] Boyce D E, Chon K S, Ferris M E, Lee Y J, Lin K T and Eash R W 1985 TRID 1985-6 181
[34] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nat. Phys. 11 888
[35] Rodgers J L and Nicewander W A 1988 American Statistician 42 59
[36] Jin X, Pokala N and Bargmann C I 2016 Cell 164 632
[37] White J G, Albertson D G and Annes M A R 1978 Nature 271 764
[38] Bargmann C I and Marder E 2013 Nat. Methods 10 483
[39] Varshney L R, Chen B L, Paniagua E, Hall D H and Chklovskii D B 2011 PLoS Computational Biology 7 e1001066
[40] Witvliet D, Mulcahy B, Mitchell J K, Meirovitch Y, Parvathala R and Holmyard D 2021 Nature 596 257
[41] Wu C X, Duan D L and Xiao R B 2023 Physica A 620 128727
[42] Duan D L, Wu X X and Si S B 2021 Frontiers of Engineering Management 8 527
[43] Pei S, Teng X, Shaman J, Morone F and Makse H A 2016 arXiv:1606.02739
[44] Sompolinsky H and Zippelius A 2011 Phys. Rev. B 25 6860
[45] Lin J 1991 IEEE Transactions on Information Theory 37 145
[1] Hash function construction using weighted complex dynamical networks
Song Yu-Rong (宋玉蓉), Jiang Guo-Ping (蒋国平). Chin. Phys. B, 2013, 22(4): 040506.
[2] Stochastic synchronization for time-varying complex dynamical networks
Guo Xiao-Yong(郭晓永) and Li Jun-Min(李俊民) . Chin. Phys. B, 2012, 21(2): 020501.
[3] Topology identification for a class of complex dynamical networks using output variables
Fan Chun-Xia(樊春霞), Wan You-Hong(万佑红), and Jiang Guo-Ping(蒋国平) . Chin. Phys. B, 2012, 21(2): 020510.
[4] Impulsive synchronization of two coupled complex networks with time-delayed dynamical nodes
Wang Shu-Guo(王树国) and Yao Hong-Xing(姚洪兴) . Chin. Phys. B, 2011, 20(9): 090513.
[5] Fault diagnosis of time-delay complex dynamical networks using output signals
Liu Hao (刘昊), Song Yu-Rong (宋玉蓉), Fan Chun-Xia (樊春霞), Jiang Guo-Ping (蒋国平). Chin. Phys. B, 2010, 19(7): 070508.
[6] Projective synchronisation with non-delayed and delayed coupling in complex networks consisting of identical nodes and different nodes
Du Rui-Jin (杜瑞瑾), Dong Gao-Gao (董高高), Tian Li-Xin (田立新), Zheng Song (郑松), Sun Mei (孙梅). Chin. Phys. B, 2010, 19(7): 070509.
[7] Adaptive projective synchronization with different scaling factors in networks
Xu Zhen-Yuan (过榴晓), Guo Liu-Xiao (徐振源), Hu Man-Feng (胡满峰). Chin. Phys. B, 2008, 17(11): 4067-4072.
[8] Synchronization of stochastically hybrid coupled neural networks with coupling discrete and distributed time-varying delays
Tang Yang (唐漾), Zhong Hui-Huang(钟恢凰), Fang Jian-An(方建安). Chin. Phys. B, 2008, 17(11): 4080-4090.
No Suggested Reading articles found!