Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 037502    DOI: 10.1088/1674-1056/27/3/037502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

NMR evidence of charge fluctuations in multiferroic CuBr2

Rui-Qi Wang(王瑞琦)1,2, Jia-Cheng Zheng(郑家成)2, Tao Chen(陈涛)2, Peng-Shuai Wang(王朋帅)2, Jin-Shan Zhang(张金珊)3, Yi Cui(崔祎)2, Chong Wang(王冲)4, Yuan Li(李源)4, Sheng Xu(徐胜)1, Feng Yuan(袁峰)1, Wei-Qiang Yu(于伟强)2
1 College of Physics, Qingdao University, Qingdao 266071, China;
2 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Natual Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
3 Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China;
4 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
Abstract  

We report combined magnetic susceptibility, dielectric constant, nuclear quadruple resonance (NQR), and zero-field nuclear magnetic resonance (NMR) measurements on single crystals of multiferroics CuBr2. High quality of the sample is demonstrated by the sharp magnetic and magnetic-driven ferroelectric transition at TN=TC≈ 74 K. The zero-field 79Br and 81Br NMR are resolved below TN. The spin-lattice relaxation rates reveal charge fluctuations when cooled below 60 K. Evidences of an increase of NMR linewidth, a reduction of dielectric constant, and an increase of magnetic susceptibility are also seen at low temperatures. These data suggest an emergent instability which competes with the spiral magnetic ordering and the ferroelectricity. Candidate mechanisms are discussed based on the quasi-one-dimensional nature of the magnetic system.

Keywords:  nuclear magnetic resonance      CuBr2      charge fluctuations  
Received:  09 November 2017      Revised:  22 December 2017      Accepted manuscript online: 
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  76.60.-k (Nuclear magnetic resonance and relaxation)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
Fund: 

Project supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0300504), the National Natural Science Foundation of China (Grant No. 11374364), the Fundamental Research Funds for the Central Universities of China, and the Research Funds of Renmin University, China (Grant No. 14XNLF08).

Corresponding Authors:  Sheng Xu, Feng Yuan, Wei-Qiang Yu      E-mail:  shengxu@qdu.cdu.cn;yuan@qdu.edu.cn;wqyu_phy@ruc.edu.cn

Cite this article: 

Rui-Qi Wang(王瑞琦), Jia-Cheng Zheng(郑家成), Tao Chen(陈涛), Peng-Shuai Wang(王朋帅), Jin-Shan Zhang(张金珊), Yi Cui(崔祎), Chong Wang(王冲), Yuan Li(李源), Sheng Xu(徐胜), Feng Yuan(袁峰), Wei-Qiang Yu(于伟强) NMR evidence of charge fluctuations in multiferroic CuBr2 2018 Chin. Phys. B 27 037502

[1] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[2] Khomskii D I 2006 J. Magn. Magn. Mater. 306 1
[3] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
[4] Hur N, Park S, Sharma P A, Ahn J S, Guha S and Cheong S W 2004 Nature 429 392
[5] Choi Y J, Yi H T, Lee S, Huang Q, Kiryukhin V and Cheong S W 2008 Phys. Rev. Lett. 100 047601
[6] Katsura H, Balatsky A V and Nagaosa N 2007 Phys. Rev. Lett. 98 027203
[7] Sergienko I A and Dagotto E 2006 Phys. Rev. B 73 094434
[8] Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
[9] Spaldin N A, Cheong S W and Ramesh R 2010 Phys. Today 63 38
[10] Banks M G, Kremer R K, Hoch C, Simon A, Ouladdiaf B, Broto J M, Rakoto H, Lee C and Whangbo M H 2009 Phys. Rev. B 80 024404
[11] Seki S, Kurumaji T, Ishiwata S, Matsui H, Murakawa H, Tokunaga Y, Kaneko Y, Hasegawa T and Tokura Y 2010 Phys. Rev. B 82 064424
[12] Zhao L, Hung T L, Li C C, Chen Y Y, Wu M K, Kremer R K, Banks M G, Simon A, Whangbo M H, Lee C, Kim J S, Kim I and Kim K H 2012 Adv. Mater. 24 2469
[13] Barraclough C G and Ng C F 1964 Trans. Faraday Soc. 60 836
[14] Lee C, Liu J, Whangbo M H, Koo H J, Kremer R K and Simon A 2012 Phys. Rev. B 86 060407
[15] Lebernegg S, Schmitt M, Tsirlin A A, Janson O and Rosner H 2013 Phys. Rev. B 87 155111
[16] Esaki T, Shimizu Y, Takami T, Itoh M, He Z Z and Ueda Y 2010 J. Phys.:Conf. Ser. 200 012070
[17] Zhang J, Ma L, Dai J, Zhang Y P, He Z Z, Normand B and Yu W Q 2014 Phys. Rev. B 89 174412
[18] Guibé L and Montabonel M C 1978 J. Mag. Res. 31 419
[19] Morgen P and Filho W W 1975 J. Chem. Phys. 62 2183
[20] Bastow T J, Whitfield H J and Bristow G K 1981 Phys. Lett. A 84 266
[21] Baston T J and Whitfield H J 1980 J. Mol. Struct. 58 305
[22] Wang C, Yu D, Liu X, Chen R, Liu X, Du X, Wang L, Iida K, Kamazawa K, Wakimoto S, Feng J, Wang N and Li Y 2017 Phys. Rev. B 96 085111
[23] Abragam A 1961 in The Principle of Nuclear Magnetism (Oxford University Press)
[24] Pound R V 1950 Phys. Rev. 79 685
[25] Obata Y 1964 J. Phys. Soc. Jpn. 19 2348
[26] Kiryukhin V and Keimer B 1995 Phys. Rev. B 52 R704
[27] Rückamp R, Baier J, Kriener M, Haverkort M W, Lorenz T, Uhrig G S, Jongen L, Möller A, Meyer G and Grüninger M 2005 Phys. Rev. Lett. 95 097203
[28] Fujiyama S, Takigawa M, Horii S, Motoyama N, Eisaki H and Uchida S 2002 J. Phys. Chem. Solid. 63 1119
[29] Chow D S, Zamborszky F, Alavi B, Tantillo D J, Baur A, Merlic C A and Brown S E 2000 Phys. Rev. Lett. 85 1698
[30] Wu T, Mayaffre H, Kr?mer, M. Horvatić, Berthier C, Hardy W N, Liang R, Bonn D A and Julien M H 2011 Nature 477 191
[31] Wang P S, Zhou P, Dai J, Zhang J, Ding X X, Lin H, Wen H H, Normand B, Yu R and Yu W Q 2016 Phys. Rev. B 93 085129
[1] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[2] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[3] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[4] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[5] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[6] High-magnetic-field induced charge order in high-Tc cuprate superconductors
L X Zheng(郑立玄), J Li(李建), T Wu(吴涛). Chin. Phys. B, 2019, 28(11): 117402.
[7] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[8] Nuclear magnetic resonance measurement station in SECUF using hybrid superconducting magnets
Zheng Li(李政), Guo-qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077404.
[9] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
[10] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[11] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[12] Parameter analysis for a nuclear magnetic resonance gyroscope based on bf133Cs-129Xe/131Xe
Da-Wei Zhang(张大伟), Zheng-Yi Xu(徐正一), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(2): 023201.
[13] Interfacial transport in lithium-ion conductors
Shaofei Wang(王少飞) and Liquan Chen(陈立泉). Chin. Phys. B, 2016, 25(1): 018202.
[14] Fast high-resolution nuclear magnetic resonance spectroscopy through indirect zero-quantum coherence detection in inhomogeneous fields
Ke Han-Ping (柯汉平), Chen Hao (陈浩), Lin Yan-Qin (林雁勤), Wei Zhi-Liang (韦芝良), Cai Shu-Hui (蔡淑惠), Zhang Zhi-Yong (张志勇), Chen Zhong (陈忠). Chin. Phys. B, 2014, 23(6): 063201.
[15] Review of nuclear magnetic resonance studies on iron-based superconductors
Ma Long (马龙), Yu Wei-Qiang (于伟强). Chin. Phys. B, 2013, 22(8): 087414.
No Suggested Reading articles found!