Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 067701    DOI: 10.1088/1674-1056/ad362f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Observing ferroelastic switching in Hf0.5Zr0.5O2 thin film

Zhao Guan(关赵)1,†,‡, Tao Wang(王陶)1,†, Yunzhe Zheng(郑赟喆)1, Yue Peng(彭悦)2, Luqi Wei(魏鹿奇)1, Yuke Zhang(张宇科)1, Abliz Mattursun(阿卜力孜cdot麦提图尔荪)1, Jiahao Huang(黄家豪)1, Wen-Yi Tong(童文旖)1, Genquan Han(韩根全)2, Binbin Chen(陈斌斌)1,3, Ping-Hua Xiang(向平华)1,3, Chun-Gang Duan(段纯刚)1,3, and Ni Zhong(钟妮)1,3,§
1 Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China;
2 School of Microelectronics, Xidian University, Xi'an 710071, China;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  Hafnium zirconium oxides (HZO), which exhibit ferroelectric properties, are promising materials for nanoscale device fabrication due to their high complementary metal-oxide-semiconductor (CMOS) compatibility. In addition to piezoelectricity, ferroelectricity, and flexoelectricity, this study reports the observation of ferroelasticity using piezoelectric force microscopy (PFM) and scanning transmission electron microscopy (STEM). The dynamics of 90$^\circ$ ferroelastic domains in HZO thin films are investigated under the influence of an electric field. Switching of the retentive domains is observed through repeated wake-up measurements. This study presents a possibility of enhancing polarization in HZO thin films during wake-up processes.
Keywords:  HfO$_{2}$-based ferroelectrics      ferroelasticity      piezoelectric force microscopy (PFM)  
Received:  25 February 2024      Revised:  15 March 2024      Accepted manuscript online:  21 March 2024
PACS:  77.90.+k (Other topics in dielectrics, piezoelectrics, and ferroelectrics and their properties)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
  77.55.D (High-permittivity gate dielectric films)  
Fund: Project supported by the the National Key Research and Development Program of China (Grant No. 2022YFA1402902), the National Natural Science Foundation of China (Grant Nos. 12074119, 12204171, 12134003, and 12374145), the Chenguang Program Foundation of Shanghai Education Development Foundation and Shanghai Municipal Education Commission, ECNU (East China Normal University) Multifunctional Platform for Innovation (006), and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Zhao Guan, Ni Zhong     E-mail:  zguan@ee.ecnu.edu.cn;nzhong@ee.ecnu.edu.cn

Cite this article: 

Zhao Guan(关赵), Tao Wang(王陶), Yunzhe Zheng(郑赟喆), Yue Peng(彭悦), Luqi Wei(魏鹿奇), Yuke Zhang(张宇科), Abliz Mattursun(阿卜力孜cdot麦提图尔荪), Jiahao Huang(黄家豪), Wen-Yi Tong(童文旖), Genquan Han(韩根全), Binbin Chen(陈斌斌), Ping-Hua Xiang(向平华), Chun-Gang Duan(段纯刚), and Ni Zhong(钟妮) Observing ferroelastic switching in Hf0.5Zr0.5O2 thin film 2024 Chin. Phys. B 33 067701

[1] Fernandez A, Acharya M, Lee H G, Schimpf J, Jiang Y, Lou D, Tian Z and Martin L W 2022 Adv. Mater. 34 2108841
[2] Dragoman M, Aldrigo M, Dragoman D, Iordanescu S, Dinescu A and Modreanu M 2021 Rapid Research Letters 15 2000521
[3] Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H and Duan C G 2020 Adv. Electron. Mater. 6 1900818
[4] Böscke T S, Müller J, Brauhaus D, Schröder U and Böttger U 2011 Appl. Phys. Lett. 99 102903
[5] Materlik R, Künneth C and Kersch A 2015 J. Appl. Phys. 117 134109
[6] Chen H Y, Zhou X F, Tang L, Chen Y H, Luo H, Yuan X, Chris R Bowen and Zhang D 2022 Appl. Phys. Rev. 9 011307
[7] Muller J, B öscke T S, M üller S, Yurchuk E, Polakowski P, Paul J, Martin D, Schenk T, Khullar K, Kersch A, Weinreich W, Riedel S, Seidel K, Kumar A, Arruda T M, Kalinin S V, Schlösser T, Boschke R, van Bentum R, Schröder U and Mikolajick T 2013 IEEE International Electron Devices Meeting, Washington, DC, USA, 2013, pp. 10.8.1-10.8.4
[8] Mulaosmanovic H, Breyer E T, Dünkel S, Beyer S, Mikolajick T and Slesazeck S 2021 Nanotechnology 32 502002
[9] Jiang P F, Luo Q, Xu X X, Gong T C, Yuan P, Wang Y, Gao Z M, Wei W, Tai L and Lv H B 2021 Adv. Electron. Mater. 7 2000728
[10] Li S D, Zhou D Y, Shi Z X, Hoffmann M, Mikolajick T and Schroeder U 2020 Adv. Electron. Mater. 6 2000264
[11] Park M H, Kim H J, Lee G, Park J, Lee Y H, Kim Y J, Moon T, Kim K D, Hyun S D, Park H W, Chang H J, Choi J H and Hwang C S 2019 Appl. Phys. Rev. 6 041403
[12] Pešić M, Fengler F P G, Larcher L, Padovani A, Schenk T, Grimley E D, Sang X H, LeBeau J M, Slesazeck S, Schroeder U and Mikolajick T 2016 Adv. Funct. Mater. 26 4601
[13] Schroeder U, Park M H, Mikolajick T and Hwang C S 2022 Nat. Rev. Mater. 7 653
[14] Lederer M, Lehninger D, Ali T and Kämpfe T 2022 Rapid Res. Lett. 16 2200168
[15] Huan T D, Sharma V, Rossetti G A and Ramprasad R 2014 Phys. Rev. B 90 064111
[16] Wei Y F, Nukala P, Salverda M, Matzen S, Zhao H J, Momand J, Everhardt A S, Agnus G, Blake G R, Lecoeur P, Kooi B J, Iniguez J, Dkhil B and Noheda B 2018 Nat. Mater. 17 1095
[17] Li X Y, Zhong H, Lin T, Meng F Q, Gao A, Liu Z H, Su D, Jin K J, Ge C, Zhang Q H and Gu L 2023 Adv. Mater. 35 2207736
[18] Estandía S, Dix N, Gazquez J, Fina I, Lyu J, Chisholm M F, Fontcuberta J and Sánchez F 2019 ACS Appl. Electron. Mater. 1 1449
[19] Kim S J, Mohan J, Summerfelt S R and Kim J 2019 The Journal of The Minerals, Metals & Materials Society (TMS) 71 246
[20] Hoffmann M, Pešić M, Chatterjee K, Khan A I, Salahuddin S, Slesazeck S, Schroeder U and Mikolajick T 2016 Adv. Funct. Mater. 26 8643
[21] Muller J, Schröder U, Böscke T S, Müller I, Böttger U, Wilde L, Sundqvist J, Lemberger M, Kucher P, Mikolajick T and Frey L 2011 J. Appl. Phys. 110 114113
[22] Li X F, Li C, Xu Z Y, Li Y S, Yang Y S, Hu H H, Jiang Z Z, Wang J I, Ren J X, Zheng C Y, Lu C J and Wen Z 2021 Rapid Res. Lett. 15 2000481
[23] Kim H J, Park M H, Kim Y J, Lee Y H, Jeon W, Gwon T, Moon T, Kim K D and Hwang C S 2014 Appl. Phys. Lett. 105 192903
[24] Batra R, Huan T D, Jones J L, Rossetti G Jr and Ramprasad R 2017 J. Phys. Chem. C 121 4139
[25] Chernikova A, Kozodaev M, Markeev A, Negrov D, Spiridonov M, Zarubin S, Bak O, Buragohain P, Lu H, Suvorova E, Gruverman A and Zenkevich A 2016 ACS Appl. Mater. Interfaces 8 7232
[26] Shimizu T, Katayama K, Kiguchi T, Akama A, Konno T J and Funakubo H 2015 Appl. Phys. Lett. 107 032910
[27] Mueller S, Mueller J, Singh A, Riedel S, Sundqvist J, Schroeder U and Mikolajick T 2012 Adv. Funct. Mater. 22 2412
[28] Zhong H, Li M Q, Zhang Q H, Yang L H, He R, Liu F, Liu Z H, Li G, Sun Q H, Xie D G, Meng F Q, Li Q, He M, Guo E J, Wang C, Zhong Z C, Wang X Q, Gu L, Yang G Z, Jin K J, Gao P and Ge C 2022 Adv. Mater. 34 2109889
[29] Starschich S, Schenk T, Schroeder U and Boettger U 2017 Appl. Phys. Lett. 110 182905
[30] Guan Z, Li Y K, Zhao Y F, Peng Y, Han G Q, Zhong N, Xiang P H, Chu J H and Duan C G 2022 Nano Lett. 22 4792
[31] Shimizu T, Mimura T, Kiguchi T, Shiraishi T, Konno T, Katsuya Y, Sakata O and Funakubo H 2018 Appl. Phys. Lett. 113 212901
[32] Salje E K H 2012 Ann. Rev. 42 265
[33] Buragohain P, Richter C, Schenk T, Lu H, Mikolajick T, Schroeder U and Gruverman A 2018 Appl. Phys. Lett. 112 222901
[34] Buragohain P, Erickson A, Mimura T, Shimizu T, Funakubo Hiroshi and Gruverman A 2022 Adv. Funct. Mater. 32 2108876
[35] Buragohain P, Erickson A, Kariuki P, Mittmann T, Richter C, Lomenzo P D, Lu H, Schenk T, Mikolajick T, Schroeder U and Gruverman A 2019 ACS Appl. Mater. Interfaces 11 35115
[36] Stolichnov I, Cavalieri M, Colla E, Schenk T, Mittmann T, Mikolajick T, Schroeder U and Ionescu A M 2018 ACS Appl. Mater. Interfaces 10 30514
[37] Richter C, Schenk T, Park M H, Tscharntke F A, Grimley E D, LeBeau J M, Zhou C, Fancher C M, Jones J L, Mikolajick T and Schroeder U 2017 Adv. Electron. Mater. 3 1700131
[38] Nagarajan V, Roytburd A, Stanishevsky A, Prasertchoung S, Zhao T, Chen L, Melngailis J, Auciello O and Ramesh R 2003 Nat. Mater. 2 43
[39] Ding W T, Zhang Y K, Tao L L, Yang Q and Zhou Y C 2020 Acta Materialia 196 556
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[3] Magnetization relaxation of uniaxial anisotropic ferromagnetic particles with linear reaction dynamics driven by DC/AC magnetic field
Yu-Song Hu(胡玉松), Min Jiang(江敏), Tao Hong(洪涛), Zheng-Ming Tang(唐正明), and Ka-Ma Huang(黄卡玛). Chin. Phys. B, 2021, 30(9): 090202.
[4] First principles study on lattice vibration and electrical properties of layered perovskite Sr2M2O7 (M=Nb, Ta)
Xing Liu(刘星), Hui-Qing Fan(樊慧庆). Chin. Phys. B, 2018, 27(8): 086104.
[5] Singular variation property of elastic constants of piezoelectric ceramics shunted to negative capacitance
Ji-Ying Hu(胡吉英), Zhao-Hui Li(李朝晖), Qi-Hu Li(李启虎). Chin. Phys. B, 2017, 26(12): 127702.
[6] Improved photovoltaic effects in Mn-doped BiFeO3 ferroelectric thin films through band gap engineering
Tang-Liu Yan(阎堂柳), Bin Chen(陈斌), Gang Liu(刘钢), Rui-Peng Niu(牛瑞鹏), Jie Shang(尚杰), Shuang Gao(高双), Wu-Hong Xue(薛武红), Jing Jin(金晶), Jiu-Ru Yang(杨九如), Run-Wei Li(李润伟). Chin. Phys. B, 2017, 26(6): 067702.
[7] Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator
Ji-Ying Hu(胡吉英), Zhao-Hui Li(李朝晖), Yang Sun(孙阳), Qi-Hu Li(李启虎). Chin. Phys. B, 2016, 25(12): 127701.
[8] Transport properties and anomalous fatigue effect of Ag/Bi0.9La0.1FeO3/La0.7Sr0.3MnO3 heterostructures
Gao Rong-Li (高荣礼), Fu Chun-Lin (符春林), Cai Wei (蔡苇), Chen Gang (陈刚), Deng Xiao-Ling (邓小玲), Yang Huai-Wen (杨怀文), Sun Ji-Rong (孙继荣), Shen Bao-Gen (沈保根). Chin. Phys. B, 2014, 23(9): 097702.
No Suggested Reading articles found!