CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Density of excess modes below the first phonon mode in four-dimensional glasses |
Lijin Wang(王利近)1,†, Ding Xu(胥鼎)2,‡, and Shiyun Zhang(张世允)2,§ |
1 School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China; 2 Department of Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Glasses are known to possess low-frequency excess modes beyond the Debye prediction. For decades, it has been assumed that evolution of low-frequency density of excess modes $D(\omega)$ with frequency $\omega$ follows a power-law scaling: $D(\omega)\sim \omega^{\gamma}$. However, it remains debated on the value of $\gamma$ at low frequencies below the first phonon-like mode in finite-size glasses. Early simulation studies reported $\gamma=4$ at low frequencies in two- (2D), three- (3D), and four-dimensional (4D) glasses, whereas recent observations in 2D and 3D glasses suggested $\gamma=3.5$ in a lower-frequency regime. It is uncertain whether the low-frequency scaling of $D(\omega)\sim \omega^{3.5}$ could be generalized to 4D glasses. Here, we conduct numerical simulation studies of excess modes at frequencies below the first phonon-like mode in 4D model glasses. It is found that the system size dependence of $D(\omega)$ below the first phonon-like mode varies with spatial dimensions: $D(\omega)$ increases in 2D glasses but decreases in 3D and 4D glasses as the system size increases. Furthermore, we demonstrate that the $\omega^{3.5}$ scaling, rather than the $\omega^{4}$ scaling, works in the lowest-frequency regime accessed in 4D glasses, regardless of interaction potentials and system sizes examined. Therefore, our findings in 4D glasses, combined with previous results in 2D and 3D glasses, suggest a common low-frequency scaling of $D(\omega)\sim \omega^{3.5}$ below the first phonon-like mode across different spatial dimensions, which would inspire further theoretical studies.
|
Received: 22 February 2024
Revised: 02 April 2024
Accepted manuscript online: 12 April 2024
|
PACS:
|
64.70.Q-
|
(Theory and modeling of the glass transition)
|
|
64.70.kj
|
(Glasses)
|
|
Fund: We acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 12374202 and 12004001), Anhui Projects (Grant Nos. 2022AH020009, S020218016, and Z010118169), and Hefei City (Grant No. Z020132009). |
Corresponding Authors:
Lijin Wang, Ding Xu, Shiyun Zhang
E-mail: lijin.wang@ahu.edu.cn;dingxu@mail.ustc.edu.cn;zsy12@mail.ustc.edu.cn
|
Cite this article:
Lijin Wang(王利近), Ding Xu(胥鼎), and Shiyun Zhang(张世允) Density of excess modes below the first phonon mode in four-dimensional glasses 2024 Chin. Phys. B 33 076401
|
[1] Kittel C 1996 Introduction to Solid State Physics 7th edn. (New York: Wiley) [2] Zeller R C and Pohl R O 1971 Phys. Rev. B 4 2029 [3] Anderson P W, Halperin B I and Varma C M 1972 Philos. Mag. 25 1 [4] Pohl R O, Liu X and Thompson E 2002 Rev. Mod. Phys. 74 991 [5] Phillips W A 1972 J. Low Temp. Phys. 7 351 [6] Xu N, Vitelli V, Wyart M, Liu A J and Nagel S R 2009 Phys. Rev. Lett. 102 038001 [7] Flenner E, Wang L and Szamel G 2020 Soft Matter 16 775 [8] Chen K, Manning M L, Yunker P J, Ellenbroek W G, Zhang Z, Liu A J and Yodh A G 2011 Phys. Rev. Lett. 107 108301 [9] Xu N, Vitelli V, Liu A J and Nagel S R 2010 Europhys. Lett. 90 56001 [10] Malandro D L and Lacks D J 1999 J. Chem. Phys. 110 4593 [11] Manning M L and Liu A J 2011 Phys. Rev. Lett. 107 108302 [12] Tong H and Xu N 2014 Phys. Rev. E 90 010401 [13] Maloney C E and Lemaitre A 2004 Phys. Rev. Lett. 93 195501 [14] Wang L, Duan Y and Xu N 2012 Soft Matter 8 11831 [15] Widmer-Cooper A, Perry H, Harrowell P and Reichman D R 2008 Nat. Phys. 4 711 [16] Wang L and Xu N 2014 Phys. Rev. Lett. 112 055701 [17] Wang L, Szamel G and Flenner E 2021 Phys. Rev. Lett. 127 248001 [18] Fu L, Zheng Y and Wang L 2024 Chin. Phys. B 33 056401 [19] Wang L, Berthier L, Flenner E, Guan P and Szamel G 2019 Soft Matter 15 7018 [20] Bouchbinder E, Lerner E, Rainone C, Urbani P and Zamponi F 2021 Phys. Rev. B 103 174202 [21] Folena G and Urbani P 2022 J. Stat. Mech. 2022 053301 [22] Shimada M and De Giuli E 2022 SciPost Phys. 12 090 [23] Stanifer E, Morse P K, Middleton A A and Manning M L 2018 Phys. Rev. E 98 042908 [24] Shimada M, Mizuno H and Ikeda A 2020 Soft Matter 16 7279 [25] Gurevich V L, Parshin D A and Schober H R 2003 Phys. Rev. B 67 094203 [26] Schirmacher W, Ruocco G and Scopigno T 2007 Phys. Rev. Lett. 98 025501 [27] Xu N, Liu A J and Nagel S R 2017 Phys. Rev. Lett. 119 215502 [28] Buchenau U, Galperin Yu M, Gurevich V L, Parshin D A, Ramos M A and Schober H R 1992 Phys. Rev. B 46 2798 [29] Gurarie V and Chalker J T 2003 Phys. Rev. B 68 134207 [30] Tanguy A, Wittmer J P, Leonforte F and Barrat J L 2002 Phys. Rev. B 66 174205 [31] Leonforte F, Boissière R, Tanguy A, Wittmer J P and Barrat J L 2005 Phys. Rev. B 72 224206 [32] Lerner E, DeGiuli E, Düring G and Wyart M 2014 Soft Matter 10 5085 [33] Mizuno H, Shiba H and Ikeda A 2017 Proc. Natl. Acad. Sci. USA 114 E9767 [34] Wang L, Ninarello A, Guan P, Berthier L, Szamel G and Flenner E 2019 Nat. Commun. 10 26 [35] Gartner L and Lerner E 2016 Sci. Post Phys. 1 016 [36] Wijtmans S and Manning M L 2017 Soft Matter 13 5649 [37] Angelani L, Paoluzzi M, Parisi G and Ruocco G 2018 Proc. Natl. Acad. Sci. USA 115 8700 [38] Shiraishi K, Hara Y and Mizuno H 2022 Phys. Rev. E 106 054611 [39] Shiraishi K, Mizuno H and Ikeda A 2023 J. Chem. Phys. 158 174502 [40] Lerner E, Düring G and Bouchbinder E 2016 Phys. Rev. Lett. 117 035501 [41] Kapteijns G, Bouchbinder E and Lerner E 2018 Phys. Rev. Lett. 121 055501 [42] Lerner E 2020 Phys. Rev. E 101 032120 [43] Das P, Hentschel H G E, Lerner E and Procaccia I 2020 Phys. Rev. B 102 014202 [44] Richard D, González-López K, Kapteijns G, Pater R, Vaknin T, Bouch-binder E and Lerner E 2020 Phys. Rev. Lett. 125 085502 [45] Shimada M, Mizuno H, Berthier L and Ikeda A 2020 Phys. Rev. E 101 052906 [46] Lerner E and Bouchbinder E 2022 J. Chem. Phys. 157 166101 [47] Krishnan V V, Ramola K and Karmakar S 2022 Soft Matter 18 3395 [48] Wang L, Fu L and Nie Y 2022 J. Chem. Phys. 157 074502 [49] Wang L, Szamel G and Flenner E 2023 J. Chem. Phys. 158 126101 [50] Mocanu F C, Berthier L, Ciarella S, Khomenko D, Reichman D R, Scalliet C and Zamponi F 2023 J. Chem. Phys. 158 014501 [51] Paoluzzi M, Angelani L, Parisi G and Ruocco G 2019 Phys. Rev. Lett. 123 155502 [52] Bitzek E, Koskinen P, Gähler F, Moseler M and Gumbsch P 2006 Phys. Rev. Lett. 97 170201 [53] Lerner E and Bouchbinder E 2018 J. Chem. Phys. 148 214502 [54] Wang L and Xu N 2013 Soft Matter 9 2475 [55] Keyes T 1997 J. Phys. Chem. A 101 2921 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|