Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050309    DOI: 10.1088/1674-1056/ad2506
GENERAL Prev   Next  

Non-Gaussianity detection of single-mode rotationally symmetric quantum states via cumulant method

Shao-Hua Xiang(向少华), † Li-Jun Huang(黄利军), and Xian-Wu Mi(米贤武)
College of Physics, Electronics and Intelligent Manufacturing, Huaihua University, Huaihua 418008, China
Abstract  The non-Gaussianity of quantum states incarnates an important resource for improving the performance of continuous-variable quantum information protocols. We propose a novel criterion of non-Gaussianity for single-mode rotationally symmetric quantum states via the squared Frobenius norm of higher-order cumulant matrix for the quadrature distribution function. As an application, we study the non-Gaussianities of three classes of single-mode symmetric non-Gaussian states: a mixture of vacuum and Fock states, single-photon added thermal states, and even/odd Schrödinger cat states. It is shown that such a criterion is faithful and effective for revealing non-Gaussianity. We further extend this criterion to two cases of symmetric multi-mode non-Gaussian states and non-symmetric single-mode non-Gaussian states.
Keywords:  non-Gaussianity criterion      cumulant matrix      quadrature distribution  
Received:  09 December 2023      Revised:  21 January 2024      Accepted manuscript online:  02 February 2024
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.-a (Quantum information)  
Fund: Project supported by the Natural Science Foundation of Hunan Province of China (Grant No. 2021JJ30535).
Corresponding Authors:  Shao-Hua Xiang,E-mail:shxiang97@163.com     E-mail:  shxiang97@163.com

Cite this article: 

Shao-Hua Xiang(向少华), Li-Jun Huang(黄利军), and Xian-Wu Mi(米贤武) Non-Gaussianity detection of single-mode rotationally symmetric quantum states via cumulant method 2024 Chin. Phys. B 33 050309

[1] Opatrný T, Kurizki G and Welsch D G 2000 Phys. Rev. A 61 032302
[2] Cochrane P T, Ralph T C and Milburn G J 2002 Phys. Rev. A 65 062306
[3] Olivares S, Paris M G A and Bonifacio R 2003 Phys. Rev. A 67 032314
[4] Dell’Anno F, Siena S De, Albano L and Illuminati F 2007 Phys. Rev. A 76 022301
[5] Huang P, He G, Fang J and Zeng G 2013 Phys. Rev. A 87 012317
[6] Cerf N J, Krüger O, Navez P, Werner R F and Wolf M M 2005 Phys. Rev. Lett. 95 070501
[7] Genoni M G, Paris M G A and Banaszek K 2007 Phys. Rev. A 76 042327
[8] Genoni M G and Paris M G A 2010 Phys. Rev. A 82 052341
[9] Ivan J S, Kumar M S and Simon R 2012 Quant. Inf. Proc. 11 853
[10] Ghiu I, Marian P and Marian T A 2013 Phys. Scr. T153 014028
[11] Genoni M G, Paris M G A and Banaszek K 2008 Phys. Rev. A 78 060303
[12] Park J, Lee J, Baek K and Nha H 2021 Phys. Rev. A 104 032415
[13] Fu S, Luo S and Zhang Y 2020 Phys. Rev. A 101 012125
[14] Olsen M K and Corney J F 2013 Phys. Rev. A 87 033839
[15] Corney J F and Olsen M K 2015 Phys. Rev. A 91 023824
[16] Xiang S H and Song K H 2015 Eur. Phys. J. D 69 260
[17] Xiang S H, Wen W, Zhao Y J and Song K H 2016 Phys. Rev. A 93 062119
[18] Xiang S H and Song K H 2018 Eur. Phys. J. D 72 185
[19] Xiang S H, Wen W, Zhao Y J and Song K H 2018 Phys. Rev. A 97 042303
[20] Xiang C, Zhao Y J and Xiang S H 2019 Phys. Scr. 94 115101
[21] Yamamoto Y and Kudo S 2017 JSIAM Lett. 9 9
[22] Juhasz T and Mazziotti D A 2006 J. Chem. Phys. 125 174105
[23] Skolnik J T and Mazziotti D A 2013 Phys. Rev. A 88 032517
[24] Yao Y, Dong G H, Xiao X and Sun C P 2016 Sci. Rep. 6 32010
[25] Vogel K and Risken H 1989 Phys. Rev. A 40 2847
[26] Xiang C, Li S S, Wen S S and Xiang S H 2022 Chin. Phys. B 31 030306
[27] Xiang S H, Li S S and Mi X W 2023 Chin. Phys. B 32 050309
[28] Agarwal G S and Tara K 1992 Phys. Rev. A 46 485
[29] Zavatta A, Parigi V and Bellini M 2007 Phys. Rev. A 75 052106
[30] Bužek V, Vidiella-Barranco A and Knight P L 1992 Phys. Rev. A 45 6570
[31] Xia Y J and Guo G C 1989 Phys. Lett. A 136 281
[32] Li F L, Li H R, Zhang J X and Zhu S Y 2002 Phys. Rev. A 66 024302
[33] Cheong Y W, Kim H and Lee H W 2004 Phys. Rev. A 70 032327
[34] Heid M and Lýtkenhaus N 2007 Phys. Rev. A 76 022313
[35] Vogel W and Sperling J 2014 Phys. Rev. A 89 052302
[36] Jeong H and An N B 2006 Phys. Rev. A 74 022104
[37] Zhang Y and Luo S L2020 Phys. Scr. 95 035101
[38] Luis A and Monroy L 2017 Phys. Rev. A 96 063802
[39] Kitagawa M and Yamamoto Y 1986 Phys. Rev. A 34 3974
[40] Ould-Baba H, Robin V and Antoni J 2015 Linear Algebra Appl. 485 392
[41] Miki D, Matsumura A and Yamamoto K 2022 Phys. Rev. D 105 026011
[42] Lvovsky A I and Raymer M G 2009 Rev. Mod. Phys. 81 299
[43] Park J, Lu Y, Lee J, Shen Y, Zhang K, Zhang S, Zubairy M S, Kim K and Nha H 2017 Proc. Natl. Acad. Sci. USA 114 891
[44] Roos C, Zeiger T, Rohde H, Nagerl H C, Eschner J, Leibfried D, Schmidt-Kaler F and Blatt R 1999 Phys. Rev. Lett. 83 4713
[45] Yurke B and Stoler D 1986 Phys. Rev. Lett. 57 13
[46] Hacker B, Welte S, Daiss S, Shaukat A, Ritter S, Li L and Rempe G 2019 Nat. Photon. 13 110
[47] Kiesel T, Vogel W, Bellini M and Zavatta A 2011 Phys. Rev. A 83 03211
[1] Cryptanalysis of efficient semi-quantum secret sharing protocol using single particles
Gan Gao(高甘). Chin. Phys. B, 2024, 33(4): 040301.
[2] One-step quantum dialogue
Peng-Hui Zhu(朱鹏辉), Wei Zhong(钟伟), Ming-Ming Du(杜明明), Xi-Yun Li(李喜云), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2024, 33(3): 030302.
[3] Dilation, discrimination and Uhlmann's theorem of link products of quantum channels
Qiang Lei(雷强), Liuheng Cao(操刘桁), Asutosh Kumar, and Junde Wu(武俊德). Chin. Phys. B, 2024, 33(3): 030304.
[4] A new quantum key distribution resource allocation and routing optimization scheme
Lin Bi(毕琳), Xiaotong Yuan(袁晓同), Weijie Wu(吴炜杰), and Shengxi Lin(林升熙). Chin. Phys. B, 2024, 33(3): 030309.
[5] Versatile and controlled quantum teleportation network
Yao-Yao Zhou(周瑶瑶), Peng-Xian Mei(梅鹏娴), Yan-Hong Liu(刘艳红), Liang Wu(吴量), Yan-Xiang Li(李雁翔), Zhi-Hui Yan(闫智辉), and Xiao-Jun Jia(贾晓军). Chin. Phys. B, 2024, 33(3): 034209.
[6] Protected simultaneous quantum remote state preparation scheme by weak and reversal measurements in noisy environments
Mandal Manoj Kumar, Choudhury Binayak S., and Samanta Soumen. Chin. Phys. B, 2024, 33(2): 020309.
[7] Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources
Le-Chen Xu(徐乐辰), Chun-Hui Zhang(张春辉), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2024, 33(2): 020313.
[8] Research progress in quantum key distribution
Chun-Xue Zhang(张春雪), Dan Wu(吴丹), Peng-Wei Cui(崔鹏伟), Jun-Chi Ma(马俊驰),Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2023, 32(12): 124207.
[9] Blind quantum computation with a client performing different single-qubit gates
Guang-Yang Wu(吴光阳), Zhen Yang(杨振), Yu-Zhan Yan(严玉瞻), Yuan-Mao Luo(罗元茂), Ming-Qiang Bai(柏明强), and Zhi-Wen Mo(莫智文). Chin. Phys. B, 2023, 32(11): 110302.
[10] Deterministic remote preparation of multi-qubit equatorial states through dissipative channels
Liu-Yong Cheng(程留永), Shi-Feng Zhang(张世凤), Zuan Meng(孟钻), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2023, 32(11): 110307.
[11] Non-Gaussian approach: Withstanding loss and noise of multi-scattering underwater channel for continuous-variable quantum teleportation
Hao Wu(吴昊), Hang Zhang(张航), Yiwu Zhu(朱益武), Gaofeng Luo(罗高峰), Zhiyue Zuo(左峙岳), Xinchao Ruan(阮新朝), and Ying Guo(郭迎). Chin. Phys. B, 2023, 32(10): 100311.
[12] Thermometry utilizing stored short-wavelength spin waves in cold atomic ensembles
Xingchang Wang(王兴昌), Jianmin Wang(王建民), Ying Zuo(左瀛), Liang Dong(董亮), Georgios A Siviloglou, and Jiefei Chen(陈洁菲). Chin. Phys. B, 2023, 32(7): 074206.
[13] Quantum homomorphic broadcast multi-signature based on homomorphic aggregation
Xin Xu(徐鑫) and Ai-Han Yin(殷爱菡). Chin. Phys. B, 2023, 32(7): 070302.
[14] Efficient semi-quantum secret sharing protocol using single particles
Ding Xing(邢丁), Yifei Wang(王艺霏), Zhao Dou(窦钊), Jian Li(李剑),Xiubo Chen(陈秀波), and Lixiang Li(李丽香). Chin. Phys. B, 2023, 32(7): 070308.
[15] Improving source-in-the-middle continuous-variable quantum key distribution using a heralded hybrid linear amplifier
Lei-Xin Wu(伍磊鑫), Yan-Yan Feng(冯艳艳), and Jian Zhou(周健). Chin. Phys. B, 2023, 32(7): 070310.
No Suggested Reading articles found!