PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas with reversed magnetic shear |
Shuai Jiang(姜帅), Zheng-Xiong Wang(王正汹)†, Lai Wei(魏来), and Tong Liu(刘桐) |
Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract Effects of plasma radiation on the nonlinear evolution of neo-classical double tearing modes (NDTMs) in tokamak plasmas with reversed magnetic shear are numerically investigated based on a set of reduced magnetohydrodynamics (MHD) equations. Cases with different separations $\varDelta_{\rm rs} =\left| {r_{\rm s2} -r_{\rm s1} } \right|$ between the two same rational surfaces are considered. In the small $\varDelta_{\rm rs} $ cases, the plasma radiation destabilizes the NDTMs and makes the kinetic energy still grow gradually in the late nonlinear phase. Moreover, the NDTM harmonics with high mode numbers reach a high level in the presence of plasma radiation, forming a broad spectrum of MHD perturbations that induces a radially broadened region of MHD turbulence. As a result, the profiles of safety factors also enter a nonlinear oscillation phase. In the intermediate $\varDelta_{\rm rs} $ case, the plasma radiation can advance the explosive burst of kinetic energy that results from the fast driven reconnection between the two rational surfaces, because it can further promote the destabilizing effects of bootstrap current perturbation on the magnetic island near the outer rational surfaces. In the large $\varDelta_{\rm rs} $ case, through destabilizing the outer islands significantly, the plasma radiation can even induce the explosive burst in the reversed magnetic shear configuration where the burst cannot be induced in the absence of plasma radiation.
|
Received: 13 June 2023
Revised: 26 July 2023
Accepted manuscript online: 08 August 2023
|
PACS:
|
52.35.Hr
|
(Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))
|
|
52.30.Cv
|
(Magnetohydrodynamics (including electron magnetohydrodynamics))
|
|
52.35.Kt
|
(Drift waves)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFE03090000), the National Natural Science Foundation of China (Grant No. 11925501), and the Fundament Research Funds for the Central Universities (Grant No. DUT22ZD215). |
Corresponding Authors:
Zheng-Xiong Wang
E-mail: zxwang@dlut.edu.cn
|
Cite this article:
Shuai Jiang(姜帅), Zheng-Xiong Wang(王正汹), Lai Wei(魏来), and Tong Liu(刘桐) Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas with reversed magnetic shear 2023 Chin. Phys. B 32 105203
|
[1] Yu Q and Günter S 1999 Nucl. Fusion 39 487 [2] Xu M, Kong D F, Liu A D, Liang Y F, Cai H S, Qiu Z Y, Chen W, Shi T H, Duan Y M, Xiang H M, Wang Y M, Zhang T, Zhang S B, Gao X, Feng X, Zhou C, Zhuang G, Hu L Q, Xu G S, Gong X Z, Zhang X D, Wan B N and the EAST Team 2021 Nucl. Fusion 61 036034 [3] Jiang M, Zhong W L, Xu Y, Shi Z B, Chen W, Ji X Q, Ding X T, Yang Z C, Shi P W, Liang A S, Wen J, Li J Q, Zhou Y, Li Y G, Yu D L, Liu Y, Yang Q W and the HL-2A Team 2018 Nucl. Fusion 58 026002 [4] Cai H S 2021 Nucl. Fusion 61 126012 [5] Wang Z X, Tang W K and Wei L 2022 Plasma Sci. Technol. 24 033001 [6] Wang Z X, Liu T and Wei L 2022 Rev. Mod. Plasma Phys. 6 14 [7] Cai H S and Li D 2022 Natl. Sci. Rev. 9 nwac019 [8] Ishii Y, Azumi M and Tuda T 2000 Phys. Plasmas 7 4477 [9] Hender T C, Wesley J C, Bialek J, et al. 2007 Nucl. Fusion 47 S128 [10] Wang Z X, Wei L and Yu F 2015 Nucl. Fusion 55 043005 [11] Yu Q 1996 Phys. Plasmas 3 2898 [12] Zhu X L, Yu L M, Chen W, Shi P W, Ge W L, Wang F, Luan Q B, Sun H E and Wang Z X 2023 Nucl. Fusion 63 036014 [13] Sato M and Wakatani M 2005 Nucl. Fusion 45 143 [14] Yu Q and Günter S 1998 Phys. Plasmas 5 3924 [15] Chang Z, Callen J D, Fredrickson E D, Budny R V, Hegna C C, McGuire K M, Zarnstorff M C and the TFTR Group 1995 Phys. Rev. Lett. 74 4663 [16] Xu H W, Zhang H W, Song Y H, Ma Z W and Wang Y N 2020 Plasma Phys. Control. Fusion 62 105009 [17] La Haye R J, Brennan D P, Buttery R J and Gerhardt S P 2010 Phys. Plasmas 17 56110 [18] Ye C, Wang Z X, Wei L and Hu Z Q 2019 Nucl. Fusion 59 096044 [19] Wang X G, Zhang X D, Wu B, Zhu S Z and Hu Y M 2015 Phys. Plasmas 22 022512 [20] Zhao K J, Shi Y J, Hahn S H, Diamond P H, Sun Y, Cheng J, Liu H, Lie N, Chen Z P, Ding Y H, Chen Z Y, Rao B, Leconte M, Bak J G, Cheng Z F, Gao L, Zhang X Q, Yang Z J, Wang N C, Wang L, Jin W, Yan L W, Dong J Q, Zhuang G and the J-TEXT team 2015 Nucl. Fusion 55 073022 [21] Liu A D, Lan T, Yu C X, Zhao H L, Yan L W, Hong W Y, Dong J Q, Zhao K J, Qian J, Cheng J, Duan X R and Liu Y 2009 Phys. Rev. Lett. 103 095002 [22] Xu G S, Wan B N, Wang H Q, Guo H Y, Zhao H L, Liu A D, Naulin V, Diamond P H, Tynan G R, Xu M, Chen R, Jiang M, Liu P, Yan N, Zhang W, Wang L, Liu S C and Ding S Y 2011 Phys. Rev. Lett. 107 125001 [23] Lan T, Liu A D, Yu C X, Yan L W, Hong W Y, Zhao K J, Dong J Q, Qian J, Cheng J, Yu D L and Yang Q W 2008 Phys. Plasmas 15 056105 [24] Buttery R J, La Haye R J, Gohil P, Jackson G L, Reimerdes H, Strait E J and the DIIID-Team 2008 Phys. Plasmas 15 056115 [25] Poli E, García-Muñoz M, Fahrbach H U, Günter S and the ASDEX Upgrade Team 2008 Phys. Plasmas 15 032501 [26] Wesson J A, Gill R D, Hugon M, Schüller F C, Snipes J A, Ward D J, Bartlett D V, Campbell D J, Duperrex P A, Edwards A W, Granetz R S, Gottardi N A O, Hender T C, Lazzaro E, Lomas P J, Lopes Cardozo N, Mast K F, Nave M F F, Salmon N A, Smeulders P, Thomas P R, Tubbing B J D, Turner M F and Weller A 1989 Nucl. Fusion 29 641 [27] Gates D A and Delgado-Aparicio L 2012 Phys. Rev. Lett. 108 165004 [28] Teng Q, Brennan D P, Delgado-Aparicio L, Gates D A, Swerdlow J and White R B 2018 Nucl. Fusion 58 106024 [29] Suttrop W, Büchl K, Fuchs J C, Kaufmann M, Lackner K, Maraschek M, Merterns V, Neu R, Schittenhelm M, Sokoll M, Zohm H and the ASDUEX Upgrade team 1997 Nucl. Fusion 37 119 [30] Xu L Q, Duan Y M, Chen K Y, Zhao H L, Luo Z P, Zheng Z, Liu Y, Liu H Q, Chen Y J, Yi Y, Hu L Q, Du H F and Shi P W 2017 Nucl. Fusion 57 126002 [31] Hu D, Nardon E, Hoelzl M, Wieschollek F, Lehnen M, Huijsmans G T A, Vugt D C, Kim S H, JET contributors and the JOREK team 2021 Nucl. Fusion 61 026015 [32] Salzedas F, Schüller F C, Oomens A A M and the RTP team 2002 Phys. Rev. Lett. 88 075002 [33] Weber H W 2011 Int. J. Mod. Phys. E 20 1325 [34] Jiang S, Tang W K, Wei L, Liu T, Xu H W and Wang Z X 2022 Plasma Sci. Technol. 24 055101 [35] Chu M S, Greene J M, Lao L L, Miller R L, Bondeson A, Sauter O, Rice B W, Strait E J, Taylor T S and Turnbull A D 1996 Phys. Rev. Lett. 77 2710 [36] Tang W K, Wang Z X, Wei L, Wang J L and Lu S S 2020 Nucl. Fusion 60 026015 [37] Zhang D Z, Feng X M, Ma J, Guo W F, Huang Y Q and Liu H B 2023 Chin. Phys. B 32 015201 [38] Wang X Q and Wang X G 2017 Nucl. Fusion 57 016039 [39] Zhang W, Ma Z W, Zhang H W and Wang X 2022 Plasma Sci. Technol. 24 035104 [40] Wei L, Wang Z X, Li J Q, Hu Z Q and Kishimoto Y 2019 Chin. Phys. B 28 125203 [41] Zhang R B, Ye L, Chen Y, Xiang N and Yang X Q 2023 Chin. Phys. B 32 025203 [42] Ishii Y, Azumi M and Kishimoto Y 2002 Phys. Rev. Lett. 89 205002 [43] Goodall D H J and Wesson J A 1984 Plasma Phys. Control. Fusion 26 789 [44] Furth H P, Rutherford P H and Selberg H 1973 Phys. Fluids 16 1054 [45] Wang Z X, Wang X G, Dong J Q, Lei Y A, Long Y X, Mou Z Z and Qu W X 2007 Phys. Rev. Lett. 99 185004 [46] Janvier M, Kishimoto Y and Li J Q 2011 Phys. Rev. Lett. 107 195001 [47] Hayakawa S, Hokkyō N, Terashima Y and Tsuneto T 1958 Proceedings of the Second United Nations International Conference On the Peaceful Uses of Atomic Energy 32 385 [48] Liu T, Wei L, Wang F and Wang Z X 2021 Chin. Phys. Lett. 38 045204 [49] Pitts R A, Bonnin X, Escourbiac F, Frerchs H, Gunn J P, Hirai T, Kukushkin A S, Kaveeva E, Miller M A, Moulton D, Rozhansky V, Senichenkov I, Sytova E, Schmitz O, Stangeby P C, Temmerman G D, Veselova I and Wiesen S 2019 Nucl. Mater. Energy 20 100696 [50] Tsitrone E, Pegourie B, Gunn J P, Bernard E, Bruno V, Corre Y, Delpech L, Diez M, Douai D, Ekedahl A, Fedorczak N, Gallo A, Loarer T, Vartanian S, Gaspar J, Le Bohec M, Rigollet F, Bisson R, Brezinsek S, Dittmar T, De Temmerman G, Hakola A, Wauters T, Balden M, Mayer M and the WEST team 2022 Nucl. Fusion 62 076028 [51] Wei L and Wang Z X 2014 Phys. Plasmas 21 062505 [52] Yu Q Q 1997 Phys. Plasmas 4 1047 [53] Wang H H, Sun Y W, Shi T H, Zang Q, Liu Y Q, Yang X, Gu S, He K Y, Gu X, Qian J P, Shen B, Luo Z P, Chu N, Jia M N, Sheng Z C, Liu H Q, Gong X Z, Wan B N and the EAST team 2018 Nucl. Fusion 58 056024 [54] Chang Z, Park W, Fredrickson E D, Batha S H, Bell M G, Bell R, Budny R V, Bush C E, Janos A, Levinton F M, McGuire K M, Park H, Sabbagh S A, Schmidt G L, Scott S D, Synakowski E J, Takahashi H, Taylor G and Zarnstorff M C 1996 Phys. Rev. Lett. 77 3553 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|