Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 015205    DOI: 10.1088/1674-1056/ad0149
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Transition from a filamentary mode to a diffuse one with varying distance from needle to stream of an argon plasma jet

Hui-Min Xu(许慧敏)1, Jing-Ge Gao(高敬格)1, Peng-Ying Jia(贾鹏英)2,†, Jun-Xia Ran(冉俊霞)2, Jun-Yu Chen(陈俊宇)2, and Jin-Mao Li(李金懋)2,3
1 School of Information and Electrical Engineering, Hebei University of Engineering, Handan 056038, China;
2 College of Physics Science and Technology, Hebei University, Baoding 071002, China;
3 School of Electrical and Information Engineering, Heilongjiang University of Technology, Jixi 158100, China
Abstract  Plasma jet has extensive application potentials in various fields, which normally operates in a diffuse mode when helium is used as the working gas. However, when less expensive argon is used, the plasma jet often operates in a filamentary mode. Compared to the filamentary mode, the diffuse mode is more desirable for applications. Hence, many efforts have been exerted to accomplish the diffuse mode of the argon plasma jet. In this paper, a novel single-needle argon plasma jet is developed to obtain the diffuse mode. It is found that the plasma jet operates in the filamentary mode when the distance from the needle tip to the central line of the argon stream (d) is short. It transits to the diffuse mode with increasing d. For the diffuse mode, there is always one discharge pulse per voltage cycle, which initiates at the rising edge of the positive voltage. For comparison, the number of discharge pulse increases with an increase in the peak voltage for the filamentary mode. Fast photography reveals that the plasma plume in the filamentary mode results from a guided positive streamer, which propagates in the argon stream. However, the plume in the diffuse mode originates from a branched streamer, which propagates in the interfacial layer between the argon stream and the surrounding air. By optical emission spectroscopy, plasma parameters are investigated for the two discharge modes, which show a similar trend with increasing d. The diffuse mode has lower electron temperature, electron density, vibrational temperature, and gas temperature compared to the filamentary mode.
Keywords:  plasma jet      diffuse mode      filamentary mode      optical emission spectroscopy  
Received:  15 August 2023      Revised:  17 September 2023      Accepted manuscript online:  09 October 2023
PACS:  52.80.Tn (Other gas discharges)  
  52.50.Dg (Plasma sources)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51977057, 11875121, and 11805013), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2020201025 and A2022201036), the Funds for Distinguished Young Scientists of Hebei Province, China (Grant No. A2012201045), the Natural Science Interdisciplinary Research Program of Hebei University (Grant No. DXK202011), and the Postgraduate’s Innovation Fund Project of Hebei University (Grant No. HBU2022bs004).
Corresponding Authors:  Peng-Ying Jia     E-mail:  jiapengying@hbu.edu.cn

Cite this article: 

Hui-Min Xu(许慧敏), Jing-Ge Gao(高敬格), Peng-Ying Jia(贾鹏英), Jun-Xia Ran(冉俊霞), Jun-Yu Chen(陈俊宇), and Jin-Mao Li(李金懋) Transition from a filamentary mode to a diffuse one with varying distance from needle to stream of an argon plasma jet 2024 Chin. Phys. B 33 015205

[1] Li X C, Wu J C, Jia B Y, Wu K Y, Kang P C, Zhang F R, Zhao N, Jia P Y, Wang L and Li S Z 2020 Appl. Phys. Lett. 117 134102
[2] Li X C, Lin X T, Wu K Y, Ren C H, Liu R and Jia P Y 2019 Plasma Sources Sci. Technol. 28 055006
[3] Lu X P and Wu S Q 2013 IEEE Trans. Plasma Sci. 41 2313
[4] Mohammadzaheri M, Siahpoush V and Asgari A 2022 Plasma Process Polym. 19 2200089
[5] Jia P Y, Jia H X, Ran J X, Wu K Y, Wu J C, Pang X X and Li X C 2023 Chin. Phys. B 32 085202
[6] Wu J C, Wu K Y, Chen J Y, Song C H, Jia P Y and Li X C 2021 Plasma Sci. Technol. 23 085504
[7] Liu Y F, Han J M, Zhang G L, Wang J L, Li M, Yang W B, Liu C Z, Li H Q and Yang S Z 2004 Chin. Phys. Lett. 21 1314
[8] Wang R X, Zhang C, Liu X, Xie Q, Yan P and Shao T 2015 Appl. Surf. Sci. 328 509
[9] Wu J C, Wu K Y, Ren C H, Jia P Y and Li X C 2020 Plasma Sci. Technol. 22 055505
[10] Liu F W, Nie L L and Lu X P 2022 Plasma Sci. Technol. 24 055408
[11] Shi Y C, Li J J, Liu H, Zuo Y G, Bai Y, Sun Z F, Ma D L and Chen G C 2015 Chin. Phys. Lett. 32 088104
[12] Wu M C, Uehara S, Wu J S, Xiao Y C, Nakajima T and Sato T 2020 J. Phys. D:Appl. Phys. 53 485201
[13] Li X C, Wang B, Jia P Y, Yang L W, Li Y and Chu J D 2017 Plasma Sci. Technol. 19 115505
[14] Jia P Y, Chen M, Jia H X, Tan X, Ran J X, Wu K Y, Wu J C, Chen J Y, Pang X X, Li X C and Zhao N 2023 IEEE Transactions on Radiation and Plasma Medical Sciences 7 203
[15] Guo Q J, Ni G H, Li L, Lin Q F, Zhao P, Meng Y D, Zhao Y J and Sui S Y 2018 Contributions to Plasma Physics 58 252
[16] Sigeneger F, Schäfer J, Weltmann K D, Foest R and Loffhagen D 2016 Plasma Process Polym. 14 1600112
[17] Zhang J L, Jiang K Q, Li S Z and Xia G Q 2013 Vacuum 88 47
[18] Lu X P, Jiang Z H, Xiong Q, Tang Z Y, Hu X W and Pan Y 2008 Appl. Phys. Lett. 92 081502
[19] Walsh J L and Kong M G 2007 Appl. Phys. Lett. 91 221502
[20] Wu J C, Li X C, Ran J X, Jia H X, Wu K Y, Han G X, Liu J N, Chen J Y, Pang X X and Jia P Y 2023 Plasma Process Polym. 20 2200188
[21] Chen J Y, Zhao N, Wu J C, Wu K Y, Zhang F R, Ran J X, Jia P Y, Pang X X and Li X C 2022 Chin. Phys. B 31 065205
[22] Li X C, Chen J Y, Lin X T, Wu J C, Wu K Y and Jia P Y 2020 Plasma Sources Sci. Technol. 29 065015
[23] Zhao N, Wu K Y, He X R, Chen J Y, Tan X, Wu J C, Ran J X, Jia P Y and Li X C 2021 J. Phys. D:Appl. Phys. 55 015203
[24] Chang Z S, Yao C W, Chen S L and Zhang G J 2016 Phys. Plasmas 23 093503
[25] Urabe K, Yamada K and Sakai O 2011 Jpn. J. Appl. Phys. 50 116002
[26] Wu S, Lu X, Zou D and Pan Y 2013 J. Appl. Phys. 114 043301
[27] Xia W J, Liu D X, Guo L, Wang W T, Xu H, Feng C, Wang X H, Kong M G and Rong M Z 2019 Plasma Sources Sci. Technol. 28 125005
[28] Li J, Xu Y G, Zhang T Y, Tang J, Wang Y S, Zhao W and Duan Y X 2017 J. Appl. Phys. 122 013301
[29] Wu J C, Jia P Y, Ran J X, Chen J Y, Zhang F R, Wu K Y, Zhao N, Ren C H, Yin Z Q and Li X C 2021 Phys. Plasmas 28 073501
[30] Shao X J, Ma Y, Li Y X and Zhang G J 2021 Acta Phys. Sin. 70 155201 (in Chinese)
[35] Abdel-Fattah E, Bazavan M and Shindo H 2015 Phys. Plasmas 22 093509
[36] Kovach Y E, Garcia M C and Foster J E 2019 IEEE Trans. Plasma Sci. 47 3214
[37] Paris P, Aints M, Valk F, Plank T, Haljaste A, Kozlov K V and Wagner H E 2005 J. Phys. D:Appl. Phys. 38 3894
[38] Li X C, Zhao N, Fang T Z, Liu Z H, Li L C and Dong L F 2008 Plasma Sources Sci. Technol. 17 015017
[39] Wu K Y, Ren C H, Jia B Y, Lin X T, Zhao N, Jia P Y and Li X C 2019 Plasma Process Polym. 16 1900073
[40] Zhu X M and Pu Y K 2010 J. Phys. D:Appl. Phys. 43 015204
[41] Zhu X M and Pu Y K 2010 J. Phys. D:Appl. Phys. 43 403001
[42] Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C and Ren C H 2023 High Volt. 8 1161
[43] Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y and Li X C 2020 Phys. Plasmas 27 082308
[44] Li S Z, Huang W T, Zhang J L and Wang D Z 2009 Appl. Phys. Lett. 94 111501
[45] Fang Z, Shao T, Wang R X, Yang J and Zhang C 2016 Eur. Phys. J. D 70 79
[46] Li X C, Chang Y Y, Jia P Y, Zhao H H, Liu R F and Di C 2013 Spectrosc. Spect. Anal. 33 926
[47] Li X C, Zhou S, Gao K, Ran J X, Wu K Y and Jia P Y 2022 IEEE Trans. Plasma Sci. 50 1717
[1] Efficient hydrophilicity improvement of titanium surface by plasma jet in micro-hollow cathode discharge geometry
Peng-Ying Jia(贾鹏英), Han-Xiao Jia(贾焓潇), Jun-Xia Ran(冉俊霞), Kai-Yue Wu(吴凯玥), Jia-Cun Wu(武珈存), Xue-Xia Pang(庞学霞), and Xue-Chen Li(李雪辰). Chin. Phys. B, 2023, 32(8): 085202.
[2] Compared discharge characteristics and film modifications of atmospheric pressure plasma jets with two different electrode geometries
Xiong Chen(陈雄), Xing-Quan Wang(王兴权), Bin-Xiang Zhang(张彬祥), Ming Yuan(袁明), and Si-Ze Yang(杨思泽). Chin. Phys. B, 2023, 32(11): 115201.
[3] Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure
Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰). Chin. Phys. B, 2022, 31(6): 065205.
[4] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[5] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[6] Characteristic plume morphologies of atmospheric Ar and He plasma jets excited by a pulsed microwave hairpin resonator
Zhao-Quan Chen(陈兆权), Ben-Kuan Zhou(周本宽), Huang Zhang(张煌), Ling-Li Hong(洪伶俐), Chang-Lin Zou(邹长林), Ping Li(李平), Wei-Dong Zhao(赵卫东), Xiao-Dong Liu(刘晓东), Olga Stepanova, A A Kudryavtsev. Chin. Phys. B, 2018, 27(5): 055202.
[7] Sterilization of mycete attached on the unearthed silk fabrics by an atmospheric pressure plasma jet
Rui Zhang(张锐), Jin-song Yu(於劲松), Jun Huang(黄骏), Guang-liang Chen(陈光良), Xin Liu(刘欣), Wei Chen(陈维), Xing-quan Wang(王兴权), Chao-rong Li(李超荣). Chin. Phys. B, 2018, 27(5): 055207.
[8] Understanding hydrogen plasma processes based on the diagnostic results of 2.45 GHz ECRIS at Peking University
Wen-Bin Wu(武文斌), Hai-Tao Ren(任海涛), Shi-Xiang Peng(彭士香), Yuan Xu(徐源), Jia-Mei Wen(温佳美), Jiang Sun(孙江), Ai-Lin Zhang(张艾霖), Tao Zhang(张滔), Jing-Feng Zhang(张景丰), Jia-Er Chen(陈佳洱). Chin. Phys. B, 2017, 26(9): 095204.
[9] Characteristics of helium DC plasma jets at atmospheric pressure with multiple cathodes
Cheng Wang(王城), Zelong Zhang(张泽龙), Haichao Cui(崔海超), Weiluo Xia(夏维珞), Weidong Xia(夏维东). Chin. Phys. B, 2017, 26(8): 085207.
[10] Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation
Wei-Long Wang(王蔚龙), Hui-Min Song(宋慧敏), Jun Li(李军), Min Jia(贾敏), Yun Wu(吴云), Di Jin(金迪). Chin. Phys. B, 2016, 25(4): 045203.
[11] LIF diagnostics of hydroxyl radical in a methanol containing atmospheric-pressure plasma jet
Mu-Yang Qian(钱沐杨), San-Qiu Liu(刘三秋), Xue-Kai Pei(裴学凯), Xin-Pei Lu(卢新培), Jia-Liang Zhang(张家良), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(10): 105205.
[12] Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet
Mu-Yang Qian(钱沐杨), Cong-Ying Yang(杨从影), Zhen-dong Wang(王震东), Xiao-Chang Chen(陈小昌), San-Qiu Liu(刘三秋), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(1): 015202.
[13] Two-dimensional numerical study of an atmospheric pressurehelium plasma jet with dual-power electrode
Yan Wen (晏雯), Liu Fu-Cheng (刘福成), Sang Chao-Feng (桑超峰), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(6): 065203.
[14] Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons
Chen Zhao-Quan (陈兆权), Yin Zhi-Xiang (殷志祥), Xia Guang-Qing (夏广庆), Hong Ling-Li (洪伶俐), Hu Ye-Lin (胡业林), Liu Ming-Hai (刘明海), Hu Xi-Wei (胡希伟), A. A. Kudryavtsev. Chin. Phys. B, 2015, 24(2): 025203.
[15] Three different low-temperature plasma-based methods for hydrophilicity improvement of polyethylene films at atmospheric pressure
Chen Guang-Liang (陈光良), Zheng Xu (郑旭), Huang Jun (黄俊), Si Xiao-Lei (司晓蕾), Chen Zhi-Li (陈致力), Xue Fei (薛飞), Sylvain Massey. Chin. Phys. B, 2013, 22(11): 115206.
No Suggested Reading articles found!