Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 010503    DOI: 10.1088/1674-1056/acf9e7
GENERAL Prev   Next  

Characteristic analysis of 5D symmetric Hamiltonian conservative hyperchaotic system with hidden multiple stability

Li-Lian Huang(黄丽莲)1,2,3,†, Yan-Hao Ma(马衍昊)1,2, and Chuang Li(李创)1,2
1 College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
2 Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin 150001, China;
3 National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China
Abstract  Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traversal and pseudo-randomness. In this work, a novel five-dimensional (5D) Hamiltonian conservative hyperchaotic system is proposed based on the 5D Euler equation. The proposed system can have different types of coordinate transformations and time reversal symmetries. In this work, Hamilton energy and Casimir energy are analyzed firstly, and it is proved that the new system satisfies Hamilton energy conservation and can generate chaos. Then, the complex dynamic characteristics of the system are demonstrated and the conservatism and chaos characteristics of the system are verified through the correlation analysis methods such as phase diagram, equilibrium point, Lyapunov exponent, bifurcation diagram, and SE complexity. In addition, a detailed analysis of the multistable characteristics of the system reveals that many energy-related coexisting orbits exist. Based on the infinite number of center-type and saddle-type equilibrium points, the dynamic characteristics of the hidden multistability of the system are revealed. Then, the National Institute of Standards and Technology (NIST) test of the new system shows that the chaotic sequence generated by the system has strong pseudo-random. Finally, the circuit simulation and hardware circuit experiment of the system are carried out with Multisim simulation software and digital signal processor (DSP) respectively. The experimental results confirm that the new system has good ergodicity and realizability.
Keywords:  Hamilton conservative hyperchaotic system      symmetry      wide parameter range      hide multiple stability  
Received:  05 August 2023      Revised:  12 September 2023      Accepted manuscript online:  15 September 2023
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Heilongjiang Province Natural Science Foundation Joint Guidance Project, China (Grant No. LH2020F022) and the Fundamental Research Funds for the Central Universities, China (Grant No. 3072022CF0801).
Corresponding Authors:  Li-Lian Huang     E-mail:  lilian_huang@163.com

Cite this article: 

Li-Lian Huang(黄丽莲), Yan-Hao Ma(马衍昊), and Chuang Li(李创) Characteristic analysis of 5D symmetric Hamiltonian conservative hyperchaotic system with hidden multiple stability 2024 Chin. Phys. B 33 010503

[1] Tutueva A V, Karimov T I and Moysis L 2021 Nonlinear Dyn. 104 727
[2] Li C, Lin D and Lü J 2018 IEEE MultiMedia 25 46
[3] Lorenz E N 1963 J. Atmos. Sci. 20 130
[4] Chen G R and Ueta T 1999 Int. J. Bifurc. Chaos 09 1465
[5] Lü J H and Chen G R 2002 Int. J. Bifurc. Chaos 12 659
[6] Eisaki H, Takagi H and Cava R J 1994 Phys. Rev. B 50 647
[7] Lü J H, Chen G R and Zhang S C 2002 Int. J. Bifurc. Chaos 12 1001
[8] Mahmoud E E 2012 Math. Comput. Model. 55 1951
[9] Molaie M, Jafari S and Sprott J C 2013 Int. J. Bifurc. Chaos 23 1350188
[10] Wang G Y, Yuan F, Chen G R and Zhang Y 2018 Chaos 28 013125
[11] Dang X Y, Li C B, Bao B C and Wu H G 2015 Chin. Phys. B 24 050503
[12] Tian H, Wang Z and Zhang P 2021 Complexity 2021 8865522
[13] Li C, Sprott J C and Hu W 2017 Int. J. Bifurc. Chaos 27 1750160
[14] Pham V T, Volos C and Jafari S 2016 Nonlinear Dyn. 87 2001
[15] Zhang Z and Huang L 2022 Nonlinear Dyn. 108 637
[16] Ji'e M, Yan D, Sun S and Zhang F 2022 IEEE Trans. Circuits Syst. 69 3328
[17] Ojoniyi O S and Njah A N 2016 Chaos Solitons Fractals 87 172
[18] Bao B C, Jiang T, Xu Q and Chen M 2016 Nonlinear Dyn. 86 1711
[19] Sprott J C, Jafari S and Khalaf A J M 2017 Eur. Phys. J. Spec. Top. 226 1979
[20] Jia H Y, Chen Z Q and Yuan Z Z 2009 Acta Phys. Sin. 58 4469 (in Chinese)
[21] Liu J M and Zhang W 2013 Optik 124 5528
[22] Xu C B and Li Z 2019 J. Zhejiang University (Eng. Sci.) 53 1552 (in Chinese)
[25] Bogoyavlensky O I 1984 Commun. Math. Phys. 95 307
[23] Bouteghrine B, Tanougast C and Said S 2021 J. Circuits, Syst. Comput. 30 2150280
[24] Lin Z, Wang G and Wang X 2018 Nonlinear Dyn. 94 1003
[26] Qi G Y 2018 Nonlinear Dyn. 95 2063
[27] Dong E Z, Jiao X D, Du S Z, Chen Z Q and Qi G Y 2020 Complexity 2020 4627597
[28] Qi G Y and Zhang J F 2017 Chaos Solitons Fractals 99 7
[29] Cang S and Wu A G 2018 Int. J. Bifurc. Chaos 28 1850087
[30] Roberts J A and Quispel G R 1992 Phys. Rep. 216 63
[31] Lamb J S and Roberts J A 1998 Physica D 112 1
[32] Sprott J C 2015 Int. J. Bifurc. Chaos 25 1550078
[33] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285
[34] Muthuswamy B 2010 Int. J. Bifurc. Chaos 20 1335
[35] Wang N, Zhang G and Kuznetsov N 2021 Commun. Nonlinear Sci. 92 105494
[36] Zhang S, Wang X and Zeng Z 2020 Chaos 30 053129
[37] Zhang S, Li C B and Zheng J H 2021 IEEE Trans. Circuits Syst. 68 4945
[38] Sun K, He S and He Y 2013 Acta Phys. Sin. 62 010501 (in Chinese)
[39] Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, Dray J and Vo S 2010 J. Res. Natl. Inst. Stan. 800 22
[40] Hu J B, Qi G Y, Wang Z and Chen G R 2021 Int. J. Bifurc. Chaos 31 2130007
[41] Wang J, Yu W and Wang J 2019 Int. J. Circ. Theor. Appl. 47 702
[1] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[2] Decompositions of the Kadomtsev-Petviashvili equation and their symmetry reductions
Zitong Chen(陈孜童), Man Jia(贾曼), Xiazhi Hao(郝夏芝), and Senyue Lou(楼森岳). Chin. Phys. B, 2024, 33(3): 030201.
[3] Enhancing the Goos-Hänchen shift based on quasi-bound states in the continuum through material asymmetric dielectric compound gratings
Xiaowei Jiang(江孝伟), Bin Fang(方彬), and Chunlian Zhan(占春连). Chin. Phys. B, 2024, 33(3): 034206.
[4] Simultaneous guidance of electromagnetic and elastic waves via glide symmetry phoxonic crystal waveguides
Lin-Lin Lei(雷林霖), Ling-Juan He(何灵娟), Qing-Hua Liao(廖清华), Wen-Xing Liu(刘文兴), and Tian-Bao Yu(于天宝). Chin. Phys. B, 2024, 33(3): 034202.
[5] Angle-resolved photoemission study of NbGeSb with non-symmorphic symmetry
Huan Ma(马欢), Ning Tan(谭宁), Xuchuan Wu(吴徐传), Man Li(李满), Yiyan Wang(王义炎), Hongyan Lu(路洪艳), Tianlong Xia(夏天龙), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(2): 027102.
[6] Majorana tunneling in a one-dimensional wire with non-Hermitian double quantum dots
Peng-Bin Niu(牛鹏斌) and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2024, 33(1): 017403.
[7] Distinct behavior of electronic structure under uniaxial strain in BaFe2As2
Jiajun Li(李佳俊), Giao Ngoc Phan, Xingyu Wang(王兴玉), Fazhi Yang(杨发枝), Quanxin Hu(胡全欣), Ke Jia(贾可), Jin Zhao(赵金), Wenyao Liu(刘文尧), Renjie Zhang(张任杰), Youguo Shi(石友国), Shiliang Li(李世亮), Tian Qian(钱天), and Hong Ding(丁洪). Chin. Phys. B, 2024, 33(1): 017401.
[8] Atomistic evaluation of tension—compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy
Runlong Xing(邢润龙) and Xuepeng Liu(刘雪鹏). Chin. Phys. B, 2024, 33(1): 016202.
[9] Commensurate and incommensurate Haldane phases for a spin-1 bilinear-biquadratic model
Yan-Wei Dai(代艳伟), Ai-Min Chen(陈爱民), Xi-Jing Liu(刘希婧), and Yao-Heng Su(苏耀恒). Chin. Phys. B, 2023, 32(9): 090304.
[10] Symmetry phases of asymmetric simple exclusion processes on two lanes with an intersection
Bo Tian(田波), Wan-Qiang Wen(文万强), A-Min Li(李阿敏), and Ping Xia(夏萍). Chin. Phys. B, 2023, 32(7): 070504.
[11] Orderly hysteresis in field-driven robot swarm active matter
Yanping Liu(刘艳萍), Gao Wang(王高), Peilong Wang(王培龙), Daming Yuan(袁大明), Shuaixu Hou(侯帅旭), Yangkai Jin(金阳凯), Jing Wang(王璟), and Liyu Liu(刘雳宇). Chin. Phys. B, 2023, 32(6): 068701.
[12] Two-dimensional tetragonal ZnB: A nodalline semimetal with good transport properties
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(6): 067301.
[13] Symmetry-constrained quantum coupling in non-Fermi-liquid transport
Rong Li(李荣) and Zhen-Su She(佘振苏). Chin. Phys. B, 2023, 32(6): 067104.
[14] Asymmetry parameters in single ionization of He, Ne by XUV pulses
Jian-Ting Lei(雷建廷), Xuan Yu(余璇), Guo-Qiang Shi(史国强), Chen-Yu Tao(陶琛玉), Shao-Hua Sun(孙少华), Shun-Cheng Yan(闫顺成), Xin-Wen Ma(马新文), Jing-Jie Ding(丁晶洁), and Shao-Feng Zhang(张少锋). Chin. Phys. B, 2023, 32(5): 053205.
[15] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
No Suggested Reading articles found!