Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017102    DOI: 10.1088/1674-1056/ad0719
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantitative determination of the critical points of Mott metal—insulator transition in strongly correlated systems

Yuekun Niu(牛月坤)1,†, Yu Ni(倪煜)2, Jianli Wang(王建利)3, Leiming Chen(陈雷鸣)3, Ye Xing(邢晔)3, Yun Song(宋筠)4,‡, and Shiping Feng(冯世平)4,§
1 School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China;
2 College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China;
3 School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China;
4 Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal—insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal—insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
Keywords:  critical point      metal—insulator transition      local quantum state fidelity      strongly correlated system      quasiparticle coherent weight  
Received:  12 September 2023      Revised:  23 October 2023      Accepted manuscript online:  26 October 2023
PACS:  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.10.-w (Theories and models of many-electron systems)  
Fund: The authors would like to thank Gabriele Bellomia for fruitful discussions. YN is also grateful to Louk Rademaker and Haiming Dong for helpful discussions. Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No. 10000- 23112101/010) and the Fundamental Research Funds for the Central Universities of China (Grant No. JN200208). YS is supported by the National Natural Science Foundation of China (Grant No. 11474023). SF is supported by the National Key Research and Development Program of China (Grant No. 2021YFA1401803) and the National Natural Science Foundation of China (Grant Nos. 11974051 and 11734002).
Corresponding Authors:  Yuekun Niu, Yun Song, Shiping Feng     E-mail:  ykniu@imu.edu.cn;yunsong@bnu.edu.cn;spfeng@bnu.edu.cn

Cite this article: 

Yuekun Niu(牛月坤), Yu Ni(倪煜), Jianli Wang(王建利), Leiming Chen(陈雷鸣), Ye Xing(邢晔), Yun Song(宋筠), and Shiping Feng(冯世平) Quantitative determination of the critical points of Mott metal—insulator transition in strongly correlated systems 2024 Chin. Phys. B 33 017102

[1] Mott N F 1949 Proc. Phys. Soc. Sect. A 62 416
[2] Mott N F 1968 Rev. Mod. Phys. 40 677
[3] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[4] Brinkman W F and Rice T M 1970 Phys. Rev. B 2 4302
[5] Bulla R 1999 Phys. Rev. Lett. 83 136
[100] Bulla R and Potthoff M 2000 Eur. Phys. J. B 13 257
[6] Turkowski V 2021 Dynamical Mean-Field Theory for Strongly Correlated Materials (Switzerland:Springer Cham) pp. 41-130
[7] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[8] Florens S, Georges A, Kotliar G and Parcollet O 2022 Phys. Rev. B 66 205102
[9] Feldbacher M, Held K and Assaad F F 2004 Phys. Rev. Lett. 93 136405
[10] Raas C and Uhrig G S 2009 Phys. Rev. B 79 115136
[11] Sordi G, Haule K and Tremblay A M S 2011 Phys. Rev. B 84 075161
[12] Eisenlohr G, Lee S S B and Vojta M 2019 Phys. Rev. B 100 155152
[13] Zhou S, Liang L and Wang Z 2020 Phys. Rev. B 101 035106
[14] van Loon E G C P, Krien F and Katanin A A 2020 Phys. Rev. Lett. 125 136402
[15] Chatzieleftheriou M, Kowalski A, Berovic M, Amaricci A, Capone M, De Leo L, Sangiovanni G and de'Medici L 2023 Phys. Rev. Lett. 130 066401
[16] Ono Y, Potthoff M and Bulla R 2003 Phys. Rev. B 67 035119
[17] Kanamori J 1963 Progress of Theoretical Physics 30 275
[18] Hubbard J 1963 P. Roy. Soc. Lond. A 276 238
[19] Hubbard J 1964 P. Roy. Soc. Lond. A 277 237
[20] Hubbard J 1964 P. Roy. Soc. Lond. A 281 401
[21] Muller-Hartmann E 1989 Z. Phys. B 74 507
[22] Metzner W and Vollhardt D 1989 Phys. Rev. Lett. 62 324
[23] Richard M M, Lucia R and David M C 2016 Interacting Electrons:Theory and computational approach (Cambridge:Cambridge University Press) pp. 421-456
[24] Georges A and Kotliar G 1992 Phys. Rev. B 45 6479
[25] Anisimov V and Izyumov Y 2010 Electronic Structure of Strongly Correlated Materials (Heidelberg:Springer Berlin) pp. 47-120
[26] Mahan G D 2000 Many-Particle Physics (New York:Springer New York) pp. 81-238
[27] Caffarel M and Krauth W 1994 Phys. Rev. Lett. 72 1545
[28] Laloux L, Georges A and Krauth W 1994 Phys. Rev. B 50 3092
[29] Dagotto E 1994 Rev. Mod. Phys. 66 763
[30] Niu Y K, Sun J, Ni Y, Liu J Y, Song Y and Feng S P 2019 Phys. Rev. B 100 075158
[31] Amaricci A, Crippa L, Scazzola A, Petocchi F, Mazza G, de'Medici L and Capone M 2022 Computer Physics Communications 273 108261
[32] Capone M, de'Medici L and Georges A 2007 Phys. Rev. B 76 245116
[33] Economou E N 2006 Green's Functions in Quantum Physics (Heidelberg:Springer Berlin) pp. 249-283
[34] Gu Z C and Wen X G 2009 Phys. Rev. B 80 155131
[35] Chen X, Gu Z C and Wen X G 2010 Phys. Rev. B 82 155138
[36] Lan T, Kong L and Wen X G 2017 Phys. Rev. B 95 235140
[37] Chen X, Gu Z C and Wen X G 2011 Phys. Rev. B 83 035107
[38] Zhou H Q and Orús R and Vidal G 2008 Phys. Rev. Lett. 100 080601
[39] Gu S J 2010 International Journal of Modern Physics B 24 4371
[40] Chen Y A, Kapustin A, Turzillo A and You M 2019 Phys. Rev. B 100 195128
[41] Wen X G 2019 Phys. Rev. B 99 205139
[42] Rams M and Damski B 2011 Phys. Rev. Lett. 106 055701
[43] Feng D and Jin G J 2013 Introduction to Condensed Matter Physics (Volume I) (Singapore:World Scientific Publishing Co. Pte. Ltd.) pp. 403-419
[44] Yuta M, Martin E and Philipp W 2018 Phys. Rev. Lett. 121 057405
[45] Sen S, Wong P J and Mitchell A K 2020 Phys. Rev. B 102 081110
[46] Perroni C A, Ishida H and Liebsch A 2007 Phys. Rev. B 75 045125
[47] Karski M, Raas C and Uhrig G S 2005 Phys. Rev. B 72 113110
[48] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[49] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[50] Castro Neto A H, Guinea F, Peres N M R, Novoselov KS and Geim A K 2009 Rev. Mod. Phys. 81 109
[51] Kim H T, Chae B G, Youn D H, Maeng S L, Kim K, Kang K Y and Lim Y S 2004 New J. Phys. 6 52
[1] Variational quantum simulation of the quantum critical regime
Zhi-Quan Shi(石志全), Xu-Dan Xie(谢旭丹), and Dan-Bo Zhang(张旦波). Chin. Phys. B, 2023, 32(8): 080305.
[2] Stability of the topological quantum critical point between multi-Weyl semimetal and band insulator
Zhao-Kun Yang(杨兆昆), Jing-Rong Wang(王景荣), and Guo-Zhu Liu(刘国柱). Chin. Phys. B, 2023, 32(5): 056401.
[3] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
[4] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[5] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[6] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[7] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[8] Relevance of 3d multiplet structure in nickelate and cuprate superconductors
Mi Jiang(蒋密). Chin. Phys. B, 2021, 30(10): 107103.
[9] Low temperature magnetism in the rare-earth perovskite GdScO3
Jie-Ming Sheng(盛洁明), Xu-Cai Kan(阚绪材), Han Ge(葛晗), Pei-Qian Yuan(袁培骞), Lei Zhang(张磊), Nan Zhao(赵南), Zong-Mei Song(宋宗美), Yuan-Yin Yao(姚远寅), Ji-Ning Tang(唐霁宁), Shan-Min Wang(王善民), Ming-Liang Tian(田明亮), Xin Tong(童欣), Liu-Suo Wu(吴留锁). Chin. Phys. B, 2020, 29(5): 057503.
[10] Quantum critical behavior in an antiferromagnetic heavy-fermion Kondo lattice system (Ce1-xLax)2Ir3Ge5
Rajwali Khan, Qianhui Mao(毛乾辉), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Jianhua Du(杜建华), Binjie Xu(许彬杰), Yuxing Zhou(周宇星), Yannan Zhang(张燕楠), Bing Chen(陈斌), Minghu Fang(方明虎). Chin. Phys. B, 2017, 26(1): 017401.
[11] Quantum phase transition and Coulomb blockade effect in triangular quantum dots with interdot capacitive and tunnel couplings
Xiong Yong-Chen (熊永臣), Wang Wei-Zhong (王为忠), Yang Jun-Tao (杨俊涛), Huang Hai-Ming (黄海铭). Chin. Phys. B, 2015, 24(2): 027501.
[12] Interplay of superconductivity and d-f correlation in CeFeAs1-xPxO1-yFy
Luo Yong-Kang (罗永康), Li Yu-Ke (李玉科), Wang Cao (王操), Lin Xiao (林效), Dai Jian-Hui (戴建辉), Cao Guang-Han (曹光旱), Xu Zhu-An (许祝安). Chin. Phys. B, 2013, 22(8): 087415.
[13] First-principles calculations of electronic and magnetic properties of CeN:The LDA+U method
Hao Ai-Min (郝爱民), Bai Jing (白静). Chin. Phys. B, 2013, 22(10): 107102.
[14] Phase diagrams of spin-3/2 Ising model in the presence of random crystal field within the effective field theory based on two approximations
Ali Yigit, Erhan Albayrak. Chin. Phys. B, 2013, 22(10): 100508.
[15] Phase diagrams of the spin-2 Ising model in the presence of a quenched diluted crystal field distribution
Ali Yigit, Erhan Albayrak. Chin. Phys. B, 2012, 21(11): 110503.
No Suggested Reading articles found!