CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Quantitative determination of the critical points of Mott metal—insulator transition in strongly correlated systems |
Yuekun Niu(牛月坤)1,†, Yu Ni(倪煜)2, Jianli Wang(王建利)3, Leiming Chen(陈雷鸣)3, Ye Xing(邢晔)3, Yun Song(宋筠)4,‡, and Shiping Feng(冯世平)4,§ |
1 School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; 2 College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China; 3 School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; 4 Department of Physics, Beijing Normal University, Beijing 100875, China |
|
|
Abstract Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal—insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal—insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
|
Received: 12 September 2023
Revised: 23 October 2023
Accepted manuscript online: 26 October 2023
|
PACS:
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.10.-w
|
(Theories and models of many-electron systems)
|
|
Fund: The authors would like to thank Gabriele Bellomia for fruitful discussions. YN is also grateful to Louk Rademaker and Haiming Dong for helpful discussions. Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No. 10000- 23112101/010) and the Fundamental Research Funds for the Central Universities of China (Grant No. JN200208). YS is supported by the National Natural Science Foundation of China (Grant No. 11474023). SF is supported by the National Key Research and Development Program of China (Grant No. 2021YFA1401803) and the National Natural Science Foundation of China (Grant Nos. 11974051 and 11734002). |
Corresponding Authors:
Yuekun Niu, Yun Song, Shiping Feng
E-mail: ykniu@imu.edu.cn;yunsong@bnu.edu.cn;spfeng@bnu.edu.cn
|
Cite this article:
Yuekun Niu(牛月坤), Yu Ni(倪煜), Jianli Wang(王建利), Leiming Chen(陈雷鸣), Ye Xing(邢晔), Yun Song(宋筠), and Shiping Feng(冯世平) Quantitative determination of the critical points of Mott metal—insulator transition in strongly correlated systems 2024 Chin. Phys. B 33 017102
|
[1] Mott N F 1949 Proc. Phys. Soc. Sect. A 62 416 [2] Mott N F 1968 Rev. Mod. Phys. 40 677 [3] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039 [4] Brinkman W F and Rice T M 1970 Phys. Rev. B 2 4302 [5] Bulla R 1999 Phys. Rev. Lett. 83 136 [100] Bulla R and Potthoff M 2000 Eur. Phys. J. B 13 257 [6] Turkowski V 2021 Dynamical Mean-Field Theory for Strongly Correlated Materials (Switzerland:Springer Cham) pp. 41-130 [7] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13 [8] Florens S, Georges A, Kotliar G and Parcollet O 2022 Phys. Rev. B 66 205102 [9] Feldbacher M, Held K and Assaad F F 2004 Phys. Rev. Lett. 93 136405 [10] Raas C and Uhrig G S 2009 Phys. Rev. B 79 115136 [11] Sordi G, Haule K and Tremblay A M S 2011 Phys. Rev. B 84 075161 [12] Eisenlohr G, Lee S S B and Vojta M 2019 Phys. Rev. B 100 155152 [13] Zhou S, Liang L and Wang Z 2020 Phys. Rev. B 101 035106 [14] van Loon E G C P, Krien F and Katanin A A 2020 Phys. Rev. Lett. 125 136402 [15] Chatzieleftheriou M, Kowalski A, Berovic M, Amaricci A, Capone M, De Leo L, Sangiovanni G and de'Medici L 2023 Phys. Rev. Lett. 130 066401 [16] Ono Y, Potthoff M and Bulla R 2003 Phys. Rev. B 67 035119 [17] Kanamori J 1963 Progress of Theoretical Physics 30 275 [18] Hubbard J 1963 P. Roy. Soc. Lond. A 276 238 [19] Hubbard J 1964 P. Roy. Soc. Lond. A 277 237 [20] Hubbard J 1964 P. Roy. Soc. Lond. A 281 401 [21] Muller-Hartmann E 1989 Z. Phys. B 74 507 [22] Metzner W and Vollhardt D 1989 Phys. Rev. Lett. 62 324 [23] Richard M M, Lucia R and David M C 2016 Interacting Electrons:Theory and computational approach (Cambridge:Cambridge University Press) pp. 421-456 [24] Georges A and Kotliar G 1992 Phys. Rev. B 45 6479 [25] Anisimov V and Izyumov Y 2010 Electronic Structure of Strongly Correlated Materials (Heidelberg:Springer Berlin) pp. 47-120 [26] Mahan G D 2000 Many-Particle Physics (New York:Springer New York) pp. 81-238 [27] Caffarel M and Krauth W 1994 Phys. Rev. Lett. 72 1545 [28] Laloux L, Georges A and Krauth W 1994 Phys. Rev. B 50 3092 [29] Dagotto E 1994 Rev. Mod. Phys. 66 763 [30] Niu Y K, Sun J, Ni Y, Liu J Y, Song Y and Feng S P 2019 Phys. Rev. B 100 075158 [31] Amaricci A, Crippa L, Scazzola A, Petocchi F, Mazza G, de'Medici L and Capone M 2022 Computer Physics Communications 273 108261 [32] Capone M, de'Medici L and Georges A 2007 Phys. Rev. B 76 245116 [33] Economou E N 2006 Green's Functions in Quantum Physics (Heidelberg:Springer Berlin) pp. 249-283 [34] Gu Z C and Wen X G 2009 Phys. Rev. B 80 155131 [35] Chen X, Gu Z C and Wen X G 2010 Phys. Rev. B 82 155138 [36] Lan T, Kong L and Wen X G 2017 Phys. Rev. B 95 235140 [37] Chen X, Gu Z C and Wen X G 2011 Phys. Rev. B 83 035107 [38] Zhou H Q and Orús R and Vidal G 2008 Phys. Rev. Lett. 100 080601 [39] Gu S J 2010 International Journal of Modern Physics B 24 4371 [40] Chen Y A, Kapustin A, Turzillo A and You M 2019 Phys. Rev. B 100 195128 [41] Wen X G 2019 Phys. Rev. B 99 205139 [42] Rams M and Damski B 2011 Phys. Rev. Lett. 106 055701 [43] Feng D and Jin G J 2013 Introduction to Condensed Matter Physics (Volume I) (Singapore:World Scientific Publishing Co. Pte. Ltd.) pp. 403-419 [44] Yuta M, Martin E and Philipp W 2018 Phys. Rev. Lett. 121 057405 [45] Sen S, Wong P J and Mitchell A K 2020 Phys. Rev. B 102 081110 [46] Perroni C A, Ishida H and Liebsch A 2007 Phys. Rev. B 75 045125 [47] Karski M, Raas C and Uhrig G S 2005 Phys. Rev. B 72 113110 [48] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865 [49] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 [50] Castro Neto A H, Guinea F, Peres N M R, Novoselov KS and Geim A K 2009 Rev. Mod. Phys. 81 109 [51] Kim H T, Chae B G, Youn D H, Maeng S L, Kim K, Kang K Y and Lim Y S 2004 New J. Phys. 6 52 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|