Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 040701    DOI: 10.1088/1674-1056/25/4/040701
GENERAL Prev   Next  

Compressed sensing sparse reconstruction for coherent field imaging

Bei Cao(曹蓓), Xiu-Juan Luo(罗秀娟), Yu Zhang(张羽), Hui Liu(刘 辉), Ming-Lai Chen(陈明徕)
Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
Abstract  Return signal processing and reconstruction plays a pivotal role in coherent field imaging, having a significant influence on the quality of the reconstructed image. To reduce the required samples and accelerate the sampling process, we propose a genuine sparse reconstruction scheme based on compressed sensing theory. By analyzing the sparsity of the received signal in the Fourier spectrum domain, we accomplish an effective random projection and then reconstruct the return signal from as little as 10% of traditional samples, finally acquiring the target image precisely. The results of the numerical simulations and practical experiments verify the correctness of the proposed method, providing an efficient processing approach for imaging fast-moving targets in the future.
Keywords:  coherent field imaging      computational imaging      sparse reconstruction      compressed sensing  
Received:  06 November 2015      Revised:  22 December 2015      Accepted manuscript online: 
PACS:  07.05.Hd (Data acquisition: hardware and software)  
  43.60.Hj (Time-frequency signal processing, wavelets)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61505248) and the Fund from Chinese Academy of Sciences, the Light of “Western” Talent Cultivation Plan “Dr. Western Fund Project” (Grant No. Y429621213).
Corresponding Authors:  Bei Cao     E-mail:  candy@opt.ac.cn

Cite this article: 

Bei Cao(曹蓓), Xiu-Juan Luo(罗秀娟), Yu Zhang(张羽), Hui Liu(刘 辉), Ming-Lai Chen(陈明徕) Compressed sensing sparse reconstruction for coherent field imaging 2016 Chin. Phys. B 25 040701

[1] Holmes R B, Ma S, Bhowmik A and Greninger C 1996 J. Opt. Soc. Am. A 13 351
[2] Holmes R B and Brinkley T 1999 Proc. SPIE 3815 11
[3] Lu L, Ji X L, Deng J P and Li X Q 2014 Chin. Phys. B 23 064209
[4] Qian X M, Zhu W Y and Rao R Z 2015 Chin. Phys. B 24 044201
[5] Stapp J, Spivey B, Chen L, Leon L, Hughes K, Sandler D and Cuellar E L 2006 Proc. SPIE 6307 630701
[6] Cuellar E L, Cooper J, Mathis J and Fairchild P 2008 Proc. SPIE 7094 70940G
[7] Yu S H, Wang J L, Dong L, Liu X Y and Wang G C 2013 Acta Opt. Sin. 33 0811001 (in Chinese)
[8] Dong L, Liu X Y, Liu J and Yu S H 2013 Acta Photon. Sin. 42 447 (in Chinese)
[9] Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289
[10] Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F and Baraniuk R G 2008 IEEE Signal Processing Magazine 25 83
[11] Baraniuk R G and Steeghs P 2007 IEEE Radar Conference, April, 2007, Waltham, MA, USA, pp. 128-133
[12] Brady D, Choi K, Marks D, Horisaki R and Lim S 2009 Opt. Express 17 13040
[13] Cand'es E J and Romberg J 2007 Inverse Probl. 23 969
[14] Tropp J A and Gilbert A C 2007 IEEE Trans. Inform. Theory 53 4655
[15] Cao B, Luo X J, Chen M L and Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese)
[16] Cuellar E L, Stapp J and Cooper J 2005 Proc. SPIE 5896 58960D
[1] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[2] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[3] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[4] Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
Fan Liu(刘璠), Xue-Feng Liu(刘雪峰), Ruo-Ming Lan(蓝若明), Xu-Ri Yao(姚旭日), Shen-Cheng Dou(窦申成), Xiao-Qing Wang(王小庆), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2021, 30(1): 014208.
[5] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
[6] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[7] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[8] Pseudo complementary measurement for traditional single-pixel cameras
Qian Dong(董乾), Xu-Ri Yao(姚旭日), Xin Liu(刘歆), Bing Liu(刘冰), and Guang-Jie Zhai(翟光杰)$. Chin. Phys. B, 2020, 29(11): 114202.
No Suggested Reading articles found!