Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 070309    DOI: 10.1088/1674-1056/acb9fb
GENERAL Prev   Next  

Variational quantum semi-supervised classifier based on label propagation

Yan-Yan Hou(侯艳艳)1,2, Jian Li(李剑)3,†, Xiu-Bo Chen(陈秀波)4, and Chong-Qiang Ye(叶崇强)2
1 College of Information Science and Engineering, ZaoZhuang University, Zaozhuang 277160, China;
2 School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
4 Information Security Center, State Key Laboratory Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Label propagation is an essential semi-supervised learning method based on graphs, which has a broad spectrum of applications in pattern recognition and data mining. This paper proposes a quantum semi-supervised classifier based on label propagation. Considering the difficulty of graph construction, we develop a variational quantum label propagation (VQLP) method. In this method, a locally parameterized quantum circuit is created to reduce the parameters required in the optimization. Furthermore, we design a quantum semi-supervised binary classifier based on hybrid Bell and Z bases measurement, which has a shallower circuit depth and is more suitable for implementation on near-term quantum devices. We demonstrate the performance of the quantum semi-supervised classifier on the Iris data set, and the simulation results show that the quantum semi-supervised classifier has higher classification accuracy than the swap test classifier. This work opens a new path to quantum machine learning based on graphs.
Keywords:  semi-supervised learning      variational quantum algorithm      parameterized quantum circuit  
Received:  10 October 2022      Revised:  14 January 2023      Accepted manuscript online:  08 February 2023
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province (Grant No. SKLACSS-202108), the National Natural Science Foundation of China (Grant No. U162271070), Scientific Research Fund of Zaozhuang University (Grant No. 102061901).
Corresponding Authors:  Jian Li     E-mail:  lijian@bupt.edu.cn

Cite this article: 

Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Chong-Qiang Ye(叶崇强) Variational quantum semi-supervised classifier based on label propagation 2023 Chin. Phys. B 32 070309

[1] Grant E, Benedetti M, Cao S, Hallam A, Lockhart J, Stojevic V, Green A G and Severini S 2018 NPJ Quantum Inform. 4 65
[2] Mitarai K, Negoro M, Kitagawa M and Fujii K 2018 Phys. Rev. A 98 032309
[3] Grant E, Benedetti M, Cao S, Hallam A, Lockhart J, Stojevic V, Green A G and Severini S 2018 NPJ Quantum Inform. 4
[4] Havlek V, Crcoles A D, Temme K, Harrow A W, Kandala A, Chow J M and Gambetta J M 2019 Nature 567 209
[5] Hou Y Y, Li J, Chen X B and Tian Y 2022 Chin. Phys. B 31 030304
[6] Benedetti M, Garcia-Pintos D, Perdomo O, Leyton-Ortega V, Nam Y and Perdomo-Ortiz A 2019 NPJ Quantum Inform. 5 1
[7] Mao W W, Lv L H, Ji Y Y, et al. 2020 Chin. Phys. B 29 018702
[8] Hamilton K E, Dumitrescu E F and Pooser R C 2019 Phys. Rev. A 99 062323
[9] Zhu D, Linke N M, Benedetti M, Landsman K A, Nguyen N H, Alderete C H, Perdomo-Ortiz A, Korda N, Garfoot A and Brecque C 2019 Sci. Adv. 5 eaaw9918
[10] Coyle B, Mills D, Dano V and Kashefi E 2020 NPJ Quantum Inform. 6 1
[11] He X, Sun L, Lyu C and Wang X 2020 Quantum Inf. Process. 19 309
[12] Liang J M, Shen S Q, Li M and Li L 2020 Phys. Rev. A 101 032323
[13] Song X T, Li H W, Yin Z Q, Liang W Y, Zhang C M, Han Y G, Chen W and Han Z F 2015 Chin. Phys. Lett. 32 80302
[14] Adhikary S, Dangwal S and Bhowmik D 2020 Quantum Inf. Process. 19 1
[15] Park D K, Blank C and Petruccione F 2020 Phys. Lett. A 384 126422
[16] Li B M, Hu M L and Fan H 2019 Acta Phys. Sin. 68 030304 (in Chinese)
[17] Zhang S, Duan Q, Li T, et al. 2020 Chin. Phys. B 29 010308
[18] Rebentrost P, Mohseni M and Lloyd S 2014 Phys. Rev. Lett. 113 130503
[19] Harrow A W, Hassidim A and Lloyd S 2009 Phys. Rev. Lett. 103 150502
[20] Lloyd S, Mohseni M and Rebentrost P 2014 Nat. Phys. 10 631
[21] Schuld M, Fingerhuth M and Petruccione F 2017 EPL 119 60002
[22] Blank C, Park D K, Rhee J K K and Petruccione F 2020 NPJ Quantum Inform. 6 1
[23] Kerenidis I and Landman J 2021 Phys. Rev. A 103 042415
[24] Sieberer L M and Lechner W 2018 Phys. Rev. A 97 052329
[25] Long G L and Sun Y 2001 Phys. Rev. A 64 014303
[26] Park D K, Petruccione F and Rhee J K K 2019 Sci. Rep. 9 1
[27] Cerezo M, Sone A, Volkoff T, Cincio L and Coles P J 2021 Nat. Commun. 12 1
[28] Wiebe N, Kapoor A and Svore K 2014 Arxiv 1401.2142
[29] Havlicek V, Corcoles A D, Temme K, Harrow A W, Kandala A, Chow J M and Gambetta J M 2019 Nature 567 209
[30] Kandal A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M and Gambetta J M 2017 Nature 549 242
[31] Zoufal C, Lucchi A and Woerner S 2019 NPJ Quantum Inform. 5 1
[32] Cerezo M, Arrasmith A, Babbush R, Benjamin S C, Endo S, Fujii K, McClean J R, Mitarai K, Yuan X and Cincio L 2021 Nat. Rev. Phys. 3 625
[33] Cincio L, Subasi Y, Sornborger A T and Coles P J 2018 New J. Phys. 20 113022
[34] Garcia-Escartin J C and Chamorro-Posada P 2013 Phys. Rev. A 87 052330
[1] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[2] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
No Suggested Reading articles found!