|
|
Two-photon double ionization of helium by chirped few-cycle attosecond pulses: From nonsequential to sequential regime |
Yao Tong(童瑶)1, Wei-Chao Jiang(姜维超)1,2, Pan Wu(伍攀)1, Liang-You Peng(彭良友)1,3 |
1 State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China;
2 Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract The two-photon double ionization (TPDI) dynamics of helium by chirped attosecond pulses are theoretically studied by solving the two-electron time-dependent Schrödinger equation in its full dimensions. We show that both the differential and the total double ionization probability can be significantly controlled by adjusting the chirp. The dependence of the TPDI on the chirp can be quite different for different photon energies, relying on the central photon energy being in the sequential region, nonsequential region, or translation region. The physics which lead to the chirp dependence for different photon energies are addressed. Present findings are well reproduced by a model based on the second-order time-dependent perturbation theory.
|
Received: 26 February 2016
Revised: 09 May 2016
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11322437 and 11574010) and the National Basic Research Project of China (Grant No. 2013CB922402). |
Corresponding Authors:
Liang-You Peng
E-mail: liangyou.peng@pku.edu.cn
|
Cite this article:
Yao Tong(童瑶), Wei-Chao Jiang(姜维超), Pan Wu(伍攀), Liang-You Peng(彭良友) Two-photon double ionization of helium by chirped few-cycle attosecond pulses: From nonsequential to sequential regime 2016 Chin. Phys. B 25 073202
|
[1] |
Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
|
[2] |
Chini M, Zhao K, and Chang Z 2014 Nat. Photon. 8 178
|
[3] |
Zewail A 2000 J. Phys. Chem. A 104 5660
|
[4] |
Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
|
[5] |
Peng L Y, Jiang W C, Geng J W, Xiong W H and Gong Q 2015 Phys. Rep. 575 1
|
[6] |
Cheng W J, Zhang S A, Jia T Q, Feng D H and Sun Z R 2014 Chin. Phys. Lett. 31 053301
|
[7] |
Zhao X, Yang Y J, Liu X S and Wang B B 2014 Chin. Phys. Lett. 31 043202
|
[8] |
Wang C L, Sun R P, Chen Y J, Gong C, Lai X Y, Kang H P, Quan W and Liu X J 2014 Chin. Phys. Lett. 31 063202
|
[9] |
Chelkowski S and Bandrauk A D 1997 Raman Spectrosc. J. 28 459
|
[10] |
Hornung T, Meier R and Motzkus M 2000 Chem. Phys. Lett. 326 445
|
[11] |
Légaré F, Chelkowski S and Bandrauk A D 2000 Chem. Phys. Lett. 329 469
|
[12] |
Malinovsky V S and Krause J L 2001 Eur. Phys. J. D 14 147
|
[13] |
Sarkar C, Bhattacharya R, Bhattacharyya S S and Saha S 2008 Phys. Rev. A 78 023406
|
[14] |
Plenge J, Wirsing A, Raschpichler C, Meyer M and Rühl E 2009 J. Chem. Phys. 130 244313
|
[15] |
Marani R and Robinson E J 1999 J. Phys. B 32 711
|
[16] |
Chatel B, Degert J, Stock S and Girard B 2003 Phys. Rev. A 68 041402
|
[17] |
Djotyan G P, Bakos J S, Sörlei Z S and Szigeti J 2004 Phys. Rev. A 70 063406
|
[18] |
Malinovskaya S A 2006 Phys. Rev. A 73 033416
|
[19] |
Xiang Y, Niu Y and Gong S 2009 Phys. Rev. A 79 053419
|
[20] |
Xu J, Zeng B and Yu Y 2010 Phys. Rev. A 82 053822
|
[21] |
Yu C, Sun Z R and Guo D S 2015 Acta Phys. Sin. 64 124207 (in Chinese)
|
[22] |
Zhong H Y, Guo J, Zhang H D, Du H and Liu X S 2015 Chin. Phys. B 24 073202
|
[23] |
Xia C L and Miao X Y 2015 Chin. Phys. Lett. 32 43202
|
[24] |
Ganeev R A, Singhal H, Naik P A, Kulagin I A, Redkin P V, Chakera J A, Tayyab M, Khan R A and Gupta P D 2009 Phys. Rev. A 80 033845
|
[25] |
Xiang Y, Niu Y and Gong S 2009 Phys. Rev. A 80 023423
|
[26] |
Nakajima T 2007 Phys. Rev. A 75 053409
|
[27] |
Nakajima T and Cormier E 2007 Opt. Lett. 32 2879
|
[28] |
Abel M J, Pfeifer T, Jullien A, Nagel P M, Bell M J, Neumark D M and Leone S R 2009 J. Phys. B 42 075601
|
[29] |
Liu M, Guo Y C and Wang B B 2015 Chin. Phys. B 24 073201
|
[30] |
Niu Y, Xiang Y, Qi Y and Gong S 2009 Phys. Rev. A 80 063818
|
[31] |
Wright M J, Pechkis J A, Carini J L, Kallush S, Kosloff R and Gould P L 2007 Phys. Rev. A 75 051401
|
[32] |
Baltuška A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W and Krausz F 2003 Nature 421 611
|
[33] |
Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, De Silverstri S and Nisoli M 2006 Science 314 443
|
[34] |
Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Atwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
|
[35] |
Peng L Y and Starace A F 2007 Phys. Rev. A 76 043401
|
[36] |
Peng L Y, Pronin E A and Starace A F 2008 New J. Phys. 10 025030
|
[37] |
Ngoko Djiokap J M, Hu S X, Jiang W C, Peng L Y and Starace A F 2012 New J. Phys. 14 095010
|
[38] |
Ngoko Djiokap J M, Hu S X, Jiang W C, Peng L Y and Starace A F 2013 Phys. Rev. A 88 011401
|
[39] |
Agostini P and DiMauro L F 2004 Rep. Prog. Phys. 67 813
|
[40] |
Hofstetter M, Schultze M, Fieβ M, Dennhardt B, Guggenmos A, Gagnon J, Yakovlev V S, Goulielmakis E, Kienberger R, Gullikson E M, Krausz F, and Kleineberg U 2011 Opt. Express 19 1767
|
[41] |
Yudin G L, Bandrauk A D and Corkum P B 2006 Phys. Rev. Lett. 96 063002
|
[42] |
Yudin G L, Patchkovskii S and Bandrauk A D 2008 J. Phys. B 41 045602
|
[43] |
Krasovskii E E and Bonitz M 2009 Phys. Rev. A 80 053421
|
[44] |
Peng L Y, Tan F, Gong Q H, Pronin E A and Starace A F 2009 Phys. Rev. A 80 013407
|
[45] |
Tan F, Peng L Y and Gong Q H 2009 Chin. Phys. B 18 4807
|
[46] |
Pronin E A, Starace A F and Peng L Y 2011 Phys. Rev. A 84 013417
|
[47] |
Nabekawa Y, Hasegawa H, Takahashi E J and Midorikawa K 2005 Phys. Rev. Lett. 94 043001
|
[48] |
Hasegawa H, Takahashi E J, Nabekawa Y, Ishikawa K L and Midorikawa K 2005 Phys. Rev. A 71 023407
|
[49] |
Palacios A, Horner D A, Rescigno T N and McCurdy C W 2010 J. Phys. B 43 194003
|
[50] |
Jiang W C, Shan J Y, Gong Q and Peng L Y 2015 Phys. Rev. Lett. 115 153002
|
[51] |
Jiang W C, Xiong W H, Geng J W, Gong Q and Peng L Y 2016 Advances of Atoms and Molecules in Strong Laser Fields, Ed. Y. Liu, Chapter 5, p. 111 (New Jersey: World Scientific)
|
[52] |
Lee T G, Pindzola M S and Robicheaux F 2009 Phys. Rev. A 79 053420
|
[53] |
Barmaki S, Lanteigne P and Laulan S 2014 Phys. Rev. A 89 063406
|
[54] |
Zhang Z, Peng L Y, Xu M H, Starace A F, Morishita T and Gong Q 2011 Phys. Rev. A 84 043409
|
[55] |
Jiang W C, Peng L Y, Xiong W H and Gong Q 2013 Phys. Rev. A 88 023410
|
[56] |
Jiang W C, Xiong W H, Zhu T S, Peng L Y and Gong Q 2014 J. Phys. B 47 091001
|
[57] |
Laulan S, Ba H S and Barmaki S 2014 Can. J. Phys. 92 194
|
[58] |
Palacios A, Rescigno T N and McCurdy C W 2009 Phys. Rev. Lett. 103 253001
|
[59] |
Verner D A, Ferlan G J, Korista K T and Yakovlev D G 1996 Astrophys. J. 465 487
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|