Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 063601    DOI: 10.1088/1674-1056/acc801
RAPID COMMUNICATION Prev   Next  

Single-electron transport in H2O@C60 single-molecule transistors

Bowen Liu(刘博文)1,†, Jun Chen(陈俊)1,†, Yiping Ouyang(欧阳一平)1, Minhao Zhang(张敏昊)1,3,‡, Yuan-Zhi Tan(谭元植)2, and Fengqi Song(宋凤麒)1,3
1 National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing 210093, China;
2 State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
3 Atom Manufacturing Institute(AMI), Nanjing 211805, China
Abstract  Single-molecule transistors (SMTs) based on fullerenes and their derivatives have been recognized as a long-sought platform for studying the single-electron transport properties. H2O@C60 is a combination of fullerene and H2O, a typical light molecule. Here we use the ‘molecular surgery’ technique to synthesize the H2O@C60 molecule and then construct the H2O@C60 SMTs, together with the C60 SMTs. Evidences for single-electron transport have been obtained in our measurements, including explicit Coulomb blockade and Coulomb oscillations. We then calculate the detailed parameters of the H2O@C60 and C60 SMTs using a capacitance model derived from the Coulomb diamond feature, which gives a capacitance ratio of 1:5.05:8.52 for the H2O@C60 SMT and 1:29.5:74.8 for the C60 SMT. Moreover, the gate efficiency factor α turns out to be 0.0686 in the H2O@C60 SMT, about ten times larger than that in the C60 SMT. We propose that the enhanced gate efficiency in H2O@C60 SMT may be induced by the closer attachment of molecular orbital electron clouds to the gate substrate due to polarization effects of H2O.
Keywords:  single-molecule transistor      fullerenes and their derivatives      light molecule      the polarization effect  
Received:  17 January 2023      Revised:  21 March 2023      Accepted manuscript online:  28 March 2023
PACS:  36.40.-c (Atomic and molecular clusters)  
Fund: We acknowledge the financial support of the National Key R&D Program of China (Grant No. 2022YFA1402), the National Natural Science Foundation of China (Grant Nos. 92161201, T2221003, 12104221, 12104220, 12274208, 12025404, and 12004174), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20200312 and BK20200310), the Fundamental Research Funds for the Central Universities (Grant No. 020414380192).
Corresponding Authors:  Minhao Zhang     E-mail:  zhangminhao@nju.edu.cn

Cite this article: 

Bowen Liu(刘博文), Jun Chen(陈俊), Yiping Ouyang(欧阳一平), Minhao Zhang(张敏昊), Yuan-Zhi Tan(谭元植), and Fengqi Song(宋凤麒) Single-electron transport in H2O@C60 single-molecule transistors 2023 Chin. Phys. B 32 063601

[1] Chen H2007 Physics 36 910 (in Chinese)
[2] Evers F, Korytár R, Tewari S, et al.2020 Rev. Mod. Phys. 92 035001
[3] Li R H, Liu J Y and Hong W J2022 Acta Phys. Sin. 71 067303 (in Chinese)
[4] Ouyang Y P, Wang F, Zhang M H, et al.2023 Adv. in Phys.: X 8 2165148
[5] Song H, Kim Y, Jang Y H et al.2009 Nature 462 1039
[6] Guo X and Liang W J2019 Chin. Phys. Lett. 36 127301
[7] Popov A A, Yang S F, and Dunsch L2013 Chem. Rev. 113 5989
[8] Lu X, Akasaka T, Slanina Z2022 Handbook of fullerene science and technology (Singapore: Springer Nature Singapore Pte Ltd.) p. 575
[9] Heath J R, O'Brien S C, Zhang Q, et al.1985 J. Am. Chem. Soc. 107 7779
[10] Weiske T, Böhme D K, Hrušák J, et al.1991 Angew. Chem. Int. Ed. Engl. 30 884
[11] Saunders M, Jiménez-Vázquez H A, Cross R J, et al.1993 Science 259 1428
[12] Murphy T A, Pawlik T, Weidinger A, et al.1996 Phys. Rev. Lett. 77 1075
[13] Suetsuna T, Dragoe N, Harneit W, et al. 2002 Chem. Eur. J. 8 5079
[14] Komatsu K, Murata M and Murata Y 2005 Science 307 238
[15] Zhang K K, Wang C, Zhang M H, et al.2020 Nat. Nanotechnol. 15 1019
[16] Li J, Hou S J, Yao Y R, et al.2022 Nat. Mater. 21 917
[17] Zhao H Y, Ma H M, Wang J, et al.2016 Chin. Phys. Lett. 33 108105
[18] Gong X F, Wang Y and Ning X J2008 Chin. Phys. Lett. 25 468
[19] Yu L H and Natelson D2004 Nano Lett. 4 79
[20] Roch N, Florens S, Bouchiat V, et al.2008 Nature 453 633
[21] Winkelmann C B, Roch N, Wernsdorfer W, et al.2009 Nat. Phys. 5 876
[22] Park H, Park J, Lim A K L, et al.2000 Nature 407 57
[23] Kurotobi K and Murata Y2011 Science 333 613
[24] Hashikawa Y, Kizaki K, Hirose T, et al.2020 RSC Adv. 10 40406
[25] Murata Y, Murata M and Komatsu K2003 J. Am. Chem. Soc. 125 7152
[26] Krachmalnicoff A, Levitt M H and Whitby R J2014 Chem. Commun. 50 13037
[27] Felker P M, Vlček V, Hietanen I, et al.2017 Phys. Chem. Chem. Phys. 19 31274
[28] Beduz C, Carravetta M, Chen J Y C, et al.2012 Proc. Natl. Acad. Sci. USA 109 12894
[29] Bucher D2012 Chem. Phys. Lett. 534 38
[30] Li Y J, Chen J Y C, Lei X G, et al.2012 J. Phys. Chem. Lett. 3 1165
[31] Mamone S, Concistré M, Carignani E, et al.2014 J. Chem. Phys. 140 194306
[32] Goh K S K, Jiménez-Ruiz M, Johnson M R, et al.2014 Phys. Chem. Chem. Phys. 16 21330
[33] Meier B, Mamone S, Concistré M, et al.2015 Nat. Commun. 6 8112
[34] Meier B, Kouřil K, Bengs C, et al.2018 Phys. Rev. Lett. 120 266001
[35] Du S Q, Hashikawa Y, Ito H, et al.2021 Nano Lett. 21 10346
[36] Kaneko S, Hashikawa Y, Fujii S, et al.2017 Chem. Phys. Chem. 18 1229
[37] Hu K J, Yan W C, Zhang M H, et al.2022 Nanotechnology 33 502001
[38] Zuo Z W, Yan W C, Zhang K K, et al.2022 AIP Adv. 12 095104
[39] Liu S Z, Lu Y J, Kappes M M, et al.1991 Science 254 408
[40] Yoshida K, Hamada I, Sakata S, et al.2013 Nano Lett. 13 481
[41] Pasupathy A N., Park J, Chang C, et al.2005 Nano Lett. 5 203
[42] Tijssen J M and Van der Zant H S J2008 Phys. Stat. Sol. (b) 245 1455
[43] Zhu G Z, Liu Y, Hashikawa Y, et al.2018 Chem. Sci. 9 5666
[44] Okamura N, Yoshida K, Sakata S, et al.2015 Appl. Phys. Lett. 106 043108
[45] Aoyagi S, Hoshino N, Akutagawa T, et al.2014 Chem. Commun. 50 524
[1] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Bottom-up design and assembly with superatomic building blocks
Famin Yu(于法民), Zhonghua Liu(刘中华), Jiarui Li(李佳芮), Wanrong Huang(黄婉蓉), Xinrui Yang(杨欣瑞), and Zhigang Wang(王志刚). Chin. Phys. B, 2022, 31(12): 128107.
[3] Chemical bonding in representative astrophysically relevant neutral, cation, and anion HCnH chains
Ioan Baldea. Chin. Phys. B, 2022, 31(12): 123101.
[4] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[5] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[6] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[7] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[8] Cluster structure prediction via CALYPSO method
Yonghong Tian(田永红), Weiguo Sun(孙伟国), Bole Chen(陈伯乐), Yuanyuan Jin(金圆圆), Cheng Lu(卢成). Chin. Phys. B, 2019, 28(10): 103104.
[9] Density functional study on the bimetallic TimZrn (n+m ≤ 5) clusters and their interactions with H2
Ge Zhang(张鸽), Yong Sheng(盛勇). Chin. Phys. B, 2018, 27(9): 093601.
[10] Structure, stability, catalytic activity, and polarizabilities of small iridium clusters
Francisco E Jorge, José R da Costa Venâncio. Chin. Phys. B, 2018, 27(6): 063102.
[11] Effect of Ni and vacancy concentration on initial formation of Cu precipitate in Fe-Cu-Ni ternary alloys by molecular dynamics simulation
Ke Liu(刘珂), Li-Juan Hu(胡丽娟), Qiao-Feng Zhang(张巧凤), Yao-Ping Xie(谢耀平), Chao Gao(高超), Hai-Ying Dong(董海英), Wan-Yi Liang(梁婉怡). Chin. Phys. B, 2017, 26(8): 083601.
[12] Dissociation of H2 on Mg-coated B12C6N6
Li Ma(马丽), Xue-Ling Jin(金雪玲), Hui-Hui Yang(杨慧慧), Xiao-Xia Wang(王小霞), Ning Du(杜宁), Hong-Shan Chen(陈宏善). Chin. Phys. B, 2017, 26(6): 068801.
[13] Structural optimization of Au-Pd bimetallic nanoparticles with improved particle swarm optimization method
Gui-Fang Shao(邵桂芳), Meng Zhu(朱梦), Ya-Li Shangguan(上官亚力), Wen-Ran Li(李文然), Can Zhang(张灿), Wei-Wei Wang(王玮玮), Ling Li(李玲). Chin. Phys. B, 2017, 26(6): 063601.
[14] Effect of metal catalyst on the mechanism of hydrogen spillover in three-dimensional covalent-organic frameworks
Xiu-Ying Liu(刘秀英), Jing-Xin Yu(于景新), Xiao-Dong Li(李晓东), Gui-Cheng Liu(刘桂成), Xiao-Feng Li(李晓凤), Joong-Kee Lee. Chin. Phys. B, 2017, 26(2): 027302.
[15] Dipole (hyper) polarizabilities of neutral silver clusters
Francisco E Jorge, Luiz G M de Macedo. Chin. Phys. B, 2016, 25(12): 123102.
No Suggested Reading articles found!