Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067501    DOI: 10.1088/1674-1056/ab8886

Exact solution of a topological spin ring with an impurity

Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅)
Department of Physics, Changji University, Changji 830011, China
Abstract  The spin-1/2 Heisenberg chain coupled to a spin-S impurity moment with anti-periodic boundary condition is studied via the off-diagonal Bethe ansatz method. The twisted boundary breaks the U(1) symmetry of the system, which leads to that the spin ring with impurity can not be solved by the conventional Bethe ansatz methods. By combining the properties of the R-matrix, the transfer matrix, and the quantum determinant, we derive the T-Q relation and the corresponding Bethe ansatz equations. The residual magnetizations of the ground states and the impurity specific heat are investigated. It is found that the residual magnetizations in this model strongly depend on the constraint of the topological boundary condition, the inhomogeneity of the impurity comparing with the hosts could depress the impurity specific heat in the thermodynamic limit. This method can be expand to other integrable impurity models without U(1) symmetry.
Keywords:  Bethe ansatz      impurity      topological spin ring  
Received:  26 October 2019      Revised:  17 March 2020      Accepted manuscript online: 
PACS:  75.30.Hx (Magnetic impurity interactions)  
  02.30.Ik (Integrable systems)  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11664001).
Corresponding Authors:  Yi-Hua Song     E-mail:

Cite this article: 

Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅) Exact solution of a topological spin ring with an impurity 2020 Chin. Phys. B 29 067501

[1] Kondo J 1964 Prog. Theor. Phys. 32 37
[2] Anderson P W 1970 J. Phys. C 3 2436
[3] Bayat A, Bose S, Sodano P and Johannessonm H 2012 Phys. Rev. Lett. 109 066403
[4] Wagner C, Chowdhury T, Pixley J H and Ingersent K 2018 Phys. Rev. Lett. 121 147602
[5] Choo K, Keyserlingk C W von, Regnault N and Neupert T 2018 Phys. Rev. Lett. 121 086808
[6] Noguchi R, Takahashi T, Kuroda K, Ochi M, Shirasawa T, Sakano M, Bareille C, Nakayama M, Watson M D,Yaji K,Harasawa A, Iwasawa H, Dudin P, Kim T K, Hoesch M, Kandyba V, Giampietri A, Barinov A, Shin S, Arita R,Sasagawa T and Kondo T 2019 Nature 566 518
[7] Stashans A and Rivera K 2016 Chin. Phys. B 33 97102
[8] Li Y, Xu B, Hu S Y, Li Y L, Li Q L and Liu W 2015 Chin. Phys. B 32 67502
[9] Jiang F X, Xi S B, Ma R R, Qin X F, Fan X C, Zhang M G, Zhou J Q and Xu X H 2013 Chin. Phys. B 30 047501
[10] Nadri F, Mardaani M and Rabani H 2019 Chin. Phys. B 28 017202
[11] Frahm H and Zvyagin A A 1997 J. Phys.: Condens. Matter 9 9939
[12] Wang Y P 1997 Phys. Rev. B 56 14045
[13] Andrei N and Johannesson H 1984 Phys. Lett. A 100 108
[14] Lee K J B and Schlottmann P 1988 Phys. Rev. B 37 379
[15] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature Phys. 5 398
[16] Xu S Y, Xia Y, Wray L A, Jia S, Meier F, Dil J H, Osterwalder J, Slomski B, Bansil A, Lin H, Cava R J and Hasan M Z 2011 Science 332 560
[17] Yang C N 1967 Phys. Rev. Lett. 19 1312
[18] Baxter R J 1971 Phys. Rev. Lett. 26 832
[19] Baxter R J 1972 Ann. Phys. 70 193
[20] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Berkeley) pp. 180–185
[21] Niccoli G 2013 Nucl. Phys. B 870 390
[22] Niccoli G 2013 J. Math. Phys. 54 053516
[23] Cao J P, Yang W L, Shi K J and Wang Y P 2013 Phys. Rev. Lett. 111 137201
[24] Cao J P, Yang W L, Shi K J and Wang Y P 2013 Nucl. Phys. B 875 152
[25] Nepomechie R I 2013 J. Phys. A: Math. Theor. 46 442002
[26] Yang K H, Song B, Wang Y P and Han R S 2002 Chin. Phys. Lett 19 111
[27] Bai X F, Zhao Y W, Yin H W and Eerdunchaolu 2018 Acta Phys. Sin. 67 177801 (in Chinese)
[28] Lu H F, Lu H Z, Shen S Q and Ng T K 2013 Phys. Rev. B 87 195122
[29] Shen Y, Dong J Q and Xu H B 2018 Acta Phys. Sin. 67 195203 (in Chinese)
[30] Wu X Y, Han W H and Yang F H 2019 Acta Phys. Sin. 68 087301 (in Chinese)
[31] Hu X L, Zhao R X, Deng J G, Hu Y M and Song Q G 2018 Chin. Phys. B 27 037105
[32] Shao S Q, Zhou K Z and Zhang Z D 2019 Chin. Phys. B 28 070501
[33] Eriksson E, Strom A, Sharma G and Johannesson H 2012 Phys. Rev. B 86 161103(R)
[34] Cao J P, Yang W L, Shi K J and Wang Y P 2014 Nucl. Phys. B 886 185
[35] Korepin V E, Bogoliubov N M and Izergin A G 1993 Quantum inverse scattering method and correlation functions (Cambridge: Cambridge University Press) pp. 137–169
[36] Galleas W 2008 Nucl. Phys. B 790 524
[37] Takahashi M 1971 Prog. Thero. Phys. 46 401
[38] Shi L P and Xiong S J 2009 Chin. Phys. B 26 067103
[39] Furusaki A and Nagaosa N 1992 Phys. Rev. Lett. 69 3378
[1] Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力). Chin. Phys. B, 2023, 32(1): 017501.
[2] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[3] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[4] Magnetic impurity in hybrid and type-II nodal line semimetals
Xiao-Rong Yang(杨晓容), Zhen-Zhen Huang(黄真真), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2021, 30(6): 067103.
[5] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[6] High performance infrared detectors compatible with CMOS-circuit process
Chao Wang(王超), Ning Li(李宁), Ning Dai(戴宁), Wang-Zhou Shi(石旺舟), Gu-Jin Hu(胡古今), and He Zhu(朱贺). Chin. Phys. B, 2021, 30(5): 050702.
[7] Exact solution of an integrable quantum spin chain with competing interactions
Jian Wang(王健), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(11): 117501.
[8] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[9] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[10] Impurity-induced Shiba bound state in the BCS-BEC crossover regime of two-dimensional Fermi superfluid
Siqi Shao(邵思齐), Kezhao Zhou(周可召), Zhidong Zhang(张志东). Chin. Phys. B, 2019, 28(7): 070501.
[11] Controllable precision of the projective truncation approximation for Green's functions
Peng Fan(范鹏), Ning-Hua Tong(同宁华). Chin. Phys. B, 2019, 28(4): 047102.
[12] Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities
Fateme Nadri, Mohammad Mardaani, Hassan Rabani. Chin. Phys. B, 2019, 28(1): 017202.
[13] Effect of nickel segregation on CuΣ9 grain boundary undergone shear deformations
Xiang-Yue Liu(刘湘月), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(6): 063103.
[14] Effect of P impurity on mechanical properties of NiAlΣ5 grain boundary: From perspectives of stress and energy
Xue-Lan Hu(胡雪兰), Ruo-Xi Zhao(赵若汐), Jiang-Ge Deng(邓江革), Yan-Min Hu(胡艳敏), Qing-Gong Song(宋庆功). Chin. Phys. B, 2018, 27(3): 037105.
[15] Electronic structures of impurities and point defects in semiconductors
Yong Zhang(张勇). Chin. Phys. B, 2018, 27(11): 117103.
No Suggested Reading articles found!