CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Exact solution of a topological spin ring with an impurity |
Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅) |
Department of Physics, Changji University, Changji 830011, China |
|
|
Abstract The spin-1/2 Heisenberg chain coupled to a spin-S impurity moment with anti-periodic boundary condition is studied via the off-diagonal Bethe ansatz method. The twisted boundary breaks the U(1) symmetry of the system, which leads to that the spin ring with impurity can not be solved by the conventional Bethe ansatz methods. By combining the properties of the R-matrix, the transfer matrix, and the quantum determinant, we derive the T-Q relation and the corresponding Bethe ansatz equations. The residual magnetizations of the ground states and the impurity specific heat are investigated. It is found that the residual magnetizations in this model strongly depend on the constraint of the topological boundary condition, the inhomogeneity of the impurity comparing with the hosts could depress the impurity specific heat in the thermodynamic limit. This method can be expand to other integrable impurity models without U(1) symmetry.
|
Received: 26 October 2019
Revised: 17 March 2020
Accepted manuscript online:
|
PACS:
|
75.30.Hx
|
(Magnetic impurity interactions)
|
|
02.30.Ik
|
(Integrable systems)
|
|
72.10.Fk
|
(Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11664001). |
Corresponding Authors:
Yi-Hua Song
E-mail: y.quantumage@163.com
|
Cite this article:
Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅) Exact solution of a topological spin ring with an impurity 2020 Chin. Phys. B 29 067501
|
[1] |
Kondo J 1964 Prog. Theor. Phys. 32 37
|
[2] |
Anderson P W 1970 J. Phys. C 3 2436
|
[3] |
Bayat A, Bose S, Sodano P and Johannessonm H 2012 Phys. Rev. Lett. 109 066403
|
[4] |
Wagner C, Chowdhury T, Pixley J H and Ingersent K 2018 Phys. Rev. Lett. 121 147602
|
[5] |
Choo K, Keyserlingk C W von, Regnault N and Neupert T 2018 Phys. Rev. Lett. 121 086808
|
[6] |
Noguchi R, Takahashi T, Kuroda K, Ochi M, Shirasawa T, Sakano M, Bareille C, Nakayama M, Watson M D,Yaji K,Harasawa A, Iwasawa H, Dudin P, Kim T K, Hoesch M, Kandyba V, Giampietri A, Barinov A, Shin S, Arita R,Sasagawa T and Kondo T 2019 Nature 566 518
|
[7] |
Stashans A and Rivera K 2016 Chin. Phys. B 33 97102
|
[8] |
Li Y, Xu B, Hu S Y, Li Y L, Li Q L and Liu W 2015 Chin. Phys. B 32 67502
|
[9] |
Jiang F X, Xi S B, Ma R R, Qin X F, Fan X C, Zhang M G, Zhou J Q and Xu X H 2013 Chin. Phys. B 30 047501
|
[10] |
Nadri F, Mardaani M and Rabani H 2019 Chin. Phys. B 28 017202
|
[11] |
Frahm H and Zvyagin A A 1997 J. Phys.: Condens. Matter 9 9939
|
[12] |
Wang Y P 1997 Phys. Rev. B 56 14045
|
[13] |
Andrei N and Johannesson H 1984 Phys. Lett. A 100 108
|
[14] |
Lee K J B and Schlottmann P 1988 Phys. Rev. B 37 379
|
[15] |
Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature Phys. 5 398
|
[16] |
Xu S Y, Xia Y, Wray L A, Jia S, Meier F, Dil J H, Osterwalder J, Slomski B, Bansil A, Lin H, Cava R J and Hasan M Z 2011 Science 332 560
|
[17] |
Yang C N 1967 Phys. Rev. Lett. 19 1312
|
[18] |
Baxter R J 1971 Phys. Rev. Lett. 26 832
|
[19] |
Baxter R J 1972 Ann. Phys. 70 193
|
[20] |
Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Berkeley) pp. 180–185
|
[21] |
Niccoli G 2013 Nucl. Phys. B 870 390
|
[22] |
Niccoli G 2013 J. Math. Phys. 54 053516
|
[23] |
Cao J P, Yang W L, Shi K J and Wang Y P 2013 Phys. Rev. Lett. 111 137201
|
[24] |
Cao J P, Yang W L, Shi K J and Wang Y P 2013 Nucl. Phys. B 875 152
|
[25] |
Nepomechie R I 2013 J. Phys. A: Math. Theor. 46 442002
|
[26] |
Yang K H, Song B, Wang Y P and Han R S 2002 Chin. Phys. Lett 19 111
|
[27] |
Bai X F, Zhao Y W, Yin H W and Eerdunchaolu 2018 Acta Phys. Sin. 67 177801 (in Chinese)
|
[28] |
Lu H F, Lu H Z, Shen S Q and Ng T K 2013 Phys. Rev. B 87 195122
|
[29] |
Shen Y, Dong J Q and Xu H B 2018 Acta Phys. Sin. 67 195203 (in Chinese)
|
[30] |
Wu X Y, Han W H and Yang F H 2019 Acta Phys. Sin. 68 087301 (in Chinese)
|
[31] |
Hu X L, Zhao R X, Deng J G, Hu Y M and Song Q G 2018 Chin. Phys. B 27 037105
|
[32] |
Shao S Q, Zhou K Z and Zhang Z D 2019 Chin. Phys. B 28 070501
|
[33] |
Eriksson E, Strom A, Sharma G and Johannesson H 2012 Phys. Rev. B 86 161103(R)
|
[34] |
Cao J P, Yang W L, Shi K J and Wang Y P 2014 Nucl. Phys. B 886 185
|
[35] |
Korepin V E, Bogoliubov N M and Izergin A G 1993 Quantum inverse scattering method and correlation functions (Cambridge: Cambridge University Press) pp. 137–169
|
[36] |
Galleas W 2008 Nucl. Phys. B 790 524
|
[37] |
Takahashi M 1971 Prog. Thero. Phys. 46 401
|
[38] |
Shi L P and Xiong S J 2009 Chin. Phys. B 26 067103
|
[39] |
Furusaki A and Nagaosa N 1992 Phys. Rev. Lett. 69 3378
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|