Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050505    DOI: 10.1088/1674-1056/acbaf0
Special Issue: SPECIAL TOPIC — Smart design of materials and design of smart materials
SPECIAL TOPIC—Smart design of materials and design of smart materials Prev   Next  

A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2

Dingbo Zhang(张定波)1,2, Weijun Ren(任卫君)2,3, Ke Wang(王珂)4, Shuai Chen(陈帅)2, Lifa Zhang(张力发)5, Yuxiang Ni(倪宇翔)1,†, and Gang Zhang(张刚)2,‡
1 School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
2 Institute of High Performance Computing, A*STAR 138632, Singapore;
3 Center for Phononics and Thermal Energy Science, China-EU Joint Laboratory for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
4 School of Automation, Xi'an University of Posts and Telecommunications, Shaanxi 710121, China;
5 NNU-SULI Thermal Energy Research Center, and Center for Quantum Transport and Thermal Energy Science(CQTES), School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
Abstract  The two-dimensional (2D) material-based thermal switch is attracting attention due to its novel applications, such as energy conversion and thermal management, in nanoscale devices. In this paper, we observed that the reversible 2H-1T' phase transition in MoTe2 is associated with about a fourfold/tenfold change in thermal conductivity along the X/Y direction by using first-principles calculations. This phenomenon can be profoundly understood by comparing the Mo-Te bonding strength between the two phases. The 2H-MoTe2 has one stronger bonding type, while 1T'-MoTe2 has three weaker types of bonds, suggesting bonding inhomogeneity in 1T'-MoTe2. Meanwhile, the bonding inhomogeneity can induce more scattering of vibration modes. The weaker bonding indicates a softer structure, resulting in lower phonon group velocity, a shorter phonon relaxation lifetime and larger Grüneisen constants. The impact caused by the 2H to 1T' phase transition in MoTe2 hinders the propagation of phonons, thereby reducing thermal conductivity. Our study describes the possibility for the provision of the MoTe2-based controllable and reversible thermal switch device.
Keywords:  thermal switch      MoTe2      phase transition      thermal conductivity      mechanism  
Received:  13 December 2022      Revised:  18 January 2023      Accepted manuscript online:  10 February 2023
PACS:  05.70.-a (Thermodynamics)  
  31.15.A- (Ab initio calculations)  
  07.10.Cm (Micromechanical devices and systems)  
  51.20.+d (Viscosity, diffusion, and thermal conductivity)  
Fund: We gratefully acknowledge the use of the computing resources at the Agency for Science, Technology and Research (A*STAR) and NSCC, Singapore. Project supported by the China Scholarship Council (Grant No. 202107000030), RIE2020 Advanced Manufacturing and Engineering (AME) Programmatic (Grant No. A1898b0043), and A*STAR Aerospace Programme (Grant No. M2115a0092).
Corresponding Authors:  Yuxiang Ni, Gang Zhang     E-mail:  yuxiang.ni@swjtu.edu.cn;zhangg@ihpc.a-star.edu.sg

Cite this article: 

Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚) A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2 2023 Chin. Phys. B 32 050505

[1] Yu Y, Nam G H, He Q, Wu X J, Zhang K, Yang Z, Chen J, Ma Q, Zhao M and Liu Z 2018 Nat. Chem. 10 638
[2] Qi K, Cui X, Gu L, Yu S, Fan X, Luo M, Xu S, Li N, Zheng L and Zhang Q 2019 Nat. Commun. 10 1
[3] Yang R, Mei L, Zhang Q, Fan Y, Shin H S, Voiry D and Zeng Z 2022 Nat. Protocols 17 358
[4] Ouyang B, Xiong S, Yang Z, Jing Y and Wang Y 2017 Nanoscale 9 8126
[5] Zhou Y, Xiong S, Zhang X, Volz S and Hu M 2018 Nat. Commun. 9 1
[6] Lai Z, He Q, Tran T H, Repaka D, Zhou D D, Sun Y, Xi S, Li Y, Chaturvedi A and Tan C 2021 Nat. Mater. 20 1113
[7] Torres-Cavanillas R, Morant-Giner M, Escorcia-Ariza G, Dugay J, Canet-Ferrer J, Tatay S, Cardona-Serra S, Giménez-Marqués M, Galbiati M and Forment-Aliaga A 2021 Nat. Chem. 13 1101
[8] Wang Y, Xiao J, Zhu H, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S, Shi W and Wang Y 2017 Nature 550 487
[9] Li W, Qian X and Li J 2021 Nature Reviews Materials 6 829
[10] Nasr J R, Simonson N, Oberoi A, Horn M W, Robinson J A and Das S 2020 ACS Nano 14 15440
[11] Deng S, Luo M, Ai C, Zhang Y, Liu B, Huang L, Jiang Z, Zhang Q, Gu L and Lin S 2019 Angewandte Chemie International Edition 58 16289
[12] Gant P, Huang P, de Lara D P, Guo D, Frisenda R and Castellanos-Gomez A 2019 Materials Today 27 8
[13] Deng S, Yang F, Zhang Q, Zhong Y, Zeng Y, Lin S, Wang X, Lu X, Wang C Z and Gu L 2018 Adv. Mater. 30 1802223
[14] Duerloo K A N, Li Y and Reed E J 2014 Nat. Commun. 5 4214
[15] Yang X, Wang S, Wang C, Lu R, Zheng X, Zhang T, Liu M, Zheng J and Chen H 2022 ACS Applied Materials & Interfaces 14 4434
[16] Aryana K, Tomko J A, Gao R, Hoglund E R, Mimura T, Makarem S, Salanova A, Hoque M S B, Pfeifer T W and Olson D H 2022 Nat. Commun. 13 1573
[17] Song S, Keum D H, Cho S, Perello D, Kim Y and Lee Y H 2016 Nano Lett. 16 188
[18] Guan M X, Liu X B, Chen D Q, Li X Y, Qi Y P, Yang Q, You P W and Meng S 2022 Phys. Rev. Lett. 128 015702
[19] Zhang D, Hu S, Sun Y, Liu X, Wang H, Wang H, Chen Y and Ni Y 2020 ES Energy & Environment 10 59
[20] Hafner J 2008 Journal of Computational Chemistry 29 2044
[21] Ernzerhof M and Scuseria G E 1999 The Journal of Chemical Physics 110 5029
[22] Zhang D, Wang K, Chen S, Zhang L, Ni Y and Zhang G 2023 Nanoscale 15 1180
[23] Liu W H, Liu Q J, Zhong M, Gan Y D, Liu F S, Li X H and Tang B 2022 Acta Materialia 236 118137
[24] Togo A and Tanaka I 2015 Scripta Materialia 108 1
[25] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[26] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
[27] Hou W, Azizimanesh A, Sewaket A, Peña T, Watson C, Liu M, Askari H and Wu S M 2019 Nat. Nanotech. 14 668
[28] Zhou J, Zhu H, Liu T H, Song Q, He R, Mao J, Liu Z, Ren W, Liao B and Singh D J 2018 Nat. Commun. 9 1
[29] Wang K, Zhou W, Cheng Y, Zhang M, Wang H and Zhang G 2021 Nanoscale 13 10882
[30] Cammarata A and Rondinelli J M 2014 The Journal of Chemical Physics 141 114704
[31] Shafique A and Shin Y H 2017 Physical Chemistry Chemical Physics 19 32072
[32] He J, Li D, Ying Y, Feng C, He J, Zhong C, Zhou H, Zhou P and Zhang G 2019 npj Computational Materials 5 47
[33] Pandey T, Peeters F and Milošvić M 2022 2D Materials 9 015034
[34] Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S and Luo T 2019 Science Advances 5 eaax3777
[35] Shin J, Sung J, Kang M, Xie X, Lee B, Lee K M, White T J, Leal C, Sottos N R and Braun P V 2019 Proc. Natl. Acad. Sci. USA 116 5973
[36] Ishibe T, Kaneko T, Uematsu Y, Sato-Akaba H, Komura M, Iyoda T and Nakamura Y 2022 Nano Lett. 22 6105
[37] Song H, Liu J, Liu B, Wu J, Cheng H M and Kang F 2018 Joule 2 442
[38] Shiomi J, Esfarjani K and Chen G 2011 Phys. Rev. B 84 104302
[39] Chang C and Zhao L D 2018 Materials Today Physics 4 50
[40] Li K, Cheng Y, Dou M, Zeng W, Volz S and Xiong S 2022 Nanomaterials 12 123
[41] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G 2020 Physics Reports 860 1
[42] Zhong H, Huang K, Yu G and Yuan S 2018 Phys. Rev. B 98 054104
[43] Zhang D, Hu S, Liu X, Chen Y, Xia Y, Wang H, Wang H and Ni Y 2020 ACS Applied Energy Materials 4 357
[44] Yang J, Qian X, Pan W, Yang R, Li Z, Han Y, Zhao M, Huang M and Wan C 2019 Adv. Mater. 31 1808222
[45] Zhong H, Yang M, Tang G and Yuan S 2020 ACS Energy Letters 5 2275
[46] Ni Y, Zhang D, Liu X, Wang H, Chen Y, Xia Y and Wang H 2021 The Journal of Chemical Physics 155 204701
[47] Gürel T, Sevik C and Çaǧn T 2011 Phys. Rev. B 84 205201
[48] Wu C W, Ren X, Xie G, Zhou W X, Zhang G and Chen K Q 2022 Phys. Rev. Applied 18 014053
[49] Zhang D and Hu Y 2021 Appl. Surf. Sci. 554 149608
[50] Zhang D, Hu Y, Zhong H, Yuan S and Liu C 2019 Nanoscale 11 13800
[1] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[2] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for the multi-segment thermal rectifier
Fu-Ye Du (杜甫烨), Wang Zhang (张望), Hui-Qiong Wang (王惠琼), Jin-Cheng Zheng (郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[3] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[4] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[5] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[6] Lattice thermal conductivity switching via structural phase transition in ferromagnetic VI3
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(5): 056502.
[7] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[8] Quantitative analysis of the morphing wing mechanism of raptors: Morphing kinematics of Falco peregrinus wing
Di Tang(唐迪), Jinqi Che(车婧琦), Weijie Jin(金伟杰), Yahui Cui(崔亚辉), Zhongyong Fan(范忠勇), Yin Yang(杨茵), and Dawei Liu(刘大伟). Chin. Phys. B, 2023, 32(4): 044703.
[9] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[10] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[11] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[12] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[13] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[14] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[15] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
No Suggested Reading articles found!