Special Issue:
SPECIAL TOPIC — Smart design of materials and design of smart materials
|
SPECIAL TOPIC—Smart design of materials and design of smart materials |
Prev
Next
|
|
|
A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2 |
Dingbo Zhang(张定波)1,2, Weijun Ren(任卫君)2,3, Ke Wang(王珂)4, Shuai Chen(陈帅)2, Lifa Zhang(张力发)5, Yuxiang Ni(倪宇翔)1,†, and Gang Zhang(张刚)2,‡ |
1 School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China; 2 Institute of High Performance Computing, A*STAR 138632, Singapore; 3 Center for Phononics and Thermal Energy Science, China-EU Joint Laboratory for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 4 School of Automation, Xi'an University of Posts and Telecommunications, Shaanxi 710121, China; 5 NNU-SULI Thermal Energy Research Center, and Center for Quantum Transport and Thermal Energy Science(CQTES), School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China |
|
|
Abstract The two-dimensional (2D) material-based thermal switch is attracting attention due to its novel applications, such as energy conversion and thermal management, in nanoscale devices. In this paper, we observed that the reversible 2H-1T' phase transition in MoTe2 is associated with about a fourfold/tenfold change in thermal conductivity along the X/Y direction by using first-principles calculations. This phenomenon can be profoundly understood by comparing the Mo-Te bonding strength between the two phases. The 2H-MoTe2 has one stronger bonding type, while 1T'-MoTe2 has three weaker types of bonds, suggesting bonding inhomogeneity in 1T'-MoTe2. Meanwhile, the bonding inhomogeneity can induce more scattering of vibration modes. The weaker bonding indicates a softer structure, resulting in lower phonon group velocity, a shorter phonon relaxation lifetime and larger Grüneisen constants. The impact caused by the 2H to 1T' phase transition in MoTe2 hinders the propagation of phonons, thereby reducing thermal conductivity. Our study describes the possibility for the provision of the MoTe2-based controllable and reversible thermal switch device.
|
Received: 13 December 2022
Revised: 18 January 2023
Accepted manuscript online: 10 February 2023
|
PACS:
|
05.70.-a
|
(Thermodynamics)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
07.10.Cm
|
(Micromechanical devices and systems)
|
|
51.20.+d
|
(Viscosity, diffusion, and thermal conductivity)
|
|
Fund: We gratefully acknowledge the use of the computing resources at the Agency for Science, Technology and Research (A*STAR) and NSCC, Singapore. Project supported by the China Scholarship Council (Grant No. 202107000030), RIE2020 Advanced Manufacturing and Engineering (AME) Programmatic (Grant No. A1898b0043), and A*STAR Aerospace Programme (Grant No. M2115a0092). |
Corresponding Authors:
Yuxiang Ni, Gang Zhang
E-mail: yuxiang.ni@swjtu.edu.cn;zhangg@ihpc.a-star.edu.sg
|
Cite this article:
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚) A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2 2023 Chin. Phys. B 32 050505
|
[1] Yu Y, Nam G H, He Q, Wu X J, Zhang K, Yang Z, Chen J, Ma Q, Zhao M and Liu Z 2018 Nat. Chem. 10 638 [2] Qi K, Cui X, Gu L, Yu S, Fan X, Luo M, Xu S, Li N, Zheng L and Zhang Q 2019 Nat. Commun. 10 1 [3] Yang R, Mei L, Zhang Q, Fan Y, Shin H S, Voiry D and Zeng Z 2022 Nat. Protocols 17 358 [4] Ouyang B, Xiong S, Yang Z, Jing Y and Wang Y 2017 Nanoscale 9 8126 [5] Zhou Y, Xiong S, Zhang X, Volz S and Hu M 2018 Nat. Commun. 9 1 [6] Lai Z, He Q, Tran T H, Repaka D, Zhou D D, Sun Y, Xi S, Li Y, Chaturvedi A and Tan C 2021 Nat. Mater. 20 1113 [7] Torres-Cavanillas R, Morant-Giner M, Escorcia-Ariza G, Dugay J, Canet-Ferrer J, Tatay S, Cardona-Serra S, Giménez-Marqués M, Galbiati M and Forment-Aliaga A 2021 Nat. Chem. 13 1101 [8] Wang Y, Xiao J, Zhu H, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S, Shi W and Wang Y 2017 Nature 550 487 [9] Li W, Qian X and Li J 2021 Nature Reviews Materials 6 829 [10] Nasr J R, Simonson N, Oberoi A, Horn M W, Robinson J A and Das S 2020 ACS Nano 14 15440 [11] Deng S, Luo M, Ai C, Zhang Y, Liu B, Huang L, Jiang Z, Zhang Q, Gu L and Lin S 2019 Angewandte Chemie International Edition 58 16289 [12] Gant P, Huang P, de Lara D P, Guo D, Frisenda R and Castellanos-Gomez A 2019 Materials Today 27 8 [13] Deng S, Yang F, Zhang Q, Zhong Y, Zeng Y, Lin S, Wang X, Lu X, Wang C Z and Gu L 2018 Adv. Mater. 30 1802223 [14] Duerloo K A N, Li Y and Reed E J 2014 Nat. Commun. 5 4214 [15] Yang X, Wang S, Wang C, Lu R, Zheng X, Zhang T, Liu M, Zheng J and Chen H 2022 ACS Applied Materials & Interfaces 14 4434 [16] Aryana K, Tomko J A, Gao R, Hoglund E R, Mimura T, Makarem S, Salanova A, Hoque M S B, Pfeifer T W and Olson D H 2022 Nat. Commun. 13 1573 [17] Song S, Keum D H, Cho S, Perello D, Kim Y and Lee Y H 2016 Nano Lett. 16 188 [18] Guan M X, Liu X B, Chen D Q, Li X Y, Qi Y P, Yang Q, You P W and Meng S 2022 Phys. Rev. Lett. 128 015702 [19] Zhang D, Hu S, Sun Y, Liu X, Wang H, Wang H, Chen Y and Ni Y 2020 ES Energy & Environment 10 59 [20] Hafner J 2008 Journal of Computational Chemistry 29 2044 [21] Ernzerhof M and Scuseria G E 1999 The Journal of Chemical Physics 110 5029 [22] Zhang D, Wang K, Chen S, Zhang L, Ni Y and Zhang G 2023 Nanoscale 15 1180 [23] Liu W H, Liu Q J, Zhong M, Gan Y D, Liu F S, Li X H and Tang B 2022 Acta Materialia 236 118137 [24] Togo A and Tanaka I 2015 Scripta Materialia 108 1 [25] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747 [26] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475 [27] Hou W, Azizimanesh A, Sewaket A, Peña T, Watson C, Liu M, Askari H and Wu S M 2019 Nat. Nanotech. 14 668 [28] Zhou J, Zhu H, Liu T H, Song Q, He R, Mao J, Liu Z, Ren W, Liao B and Singh D J 2018 Nat. Commun. 9 1 [29] Wang K, Zhou W, Cheng Y, Zhang M, Wang H and Zhang G 2021 Nanoscale 13 10882 [30] Cammarata A and Rondinelli J M 2014 The Journal of Chemical Physics 141 114704 [31] Shafique A and Shin Y H 2017 Physical Chemistry Chemical Physics 19 32072 [32] He J, Li D, Ying Y, Feng C, He J, Zhong C, Zhou H, Zhou P and Zhang G 2019 npj Computational Materials 5 47 [33] Pandey T, Peeters F and Milošvić M 2022 2D Materials 9 015034 [34] Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S and Luo T 2019 Science Advances 5 eaax3777 [35] Shin J, Sung J, Kang M, Xie X, Lee B, Lee K M, White T J, Leal C, Sottos N R and Braun P V 2019 Proc. Natl. Acad. Sci. USA 116 5973 [36] Ishibe T, Kaneko T, Uematsu Y, Sato-Akaba H, Komura M, Iyoda T and Nakamura Y 2022 Nano Lett. 22 6105 [37] Song H, Liu J, Liu B, Wu J, Cheng H M and Kang F 2018 Joule 2 442 [38] Shiomi J, Esfarjani K and Chen G 2011 Phys. Rev. B 84 104302 [39] Chang C and Zhao L D 2018 Materials Today Physics 4 50 [40] Li K, Cheng Y, Dou M, Zeng W, Volz S and Xiong S 2022 Nanomaterials 12 123 [41] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G 2020 Physics Reports 860 1 [42] Zhong H, Huang K, Yu G and Yuan S 2018 Phys. Rev. B 98 054104 [43] Zhang D, Hu S, Liu X, Chen Y, Xia Y, Wang H, Wang H and Ni Y 2020 ACS Applied Energy Materials 4 357 [44] Yang J, Qian X, Pan W, Yang R, Li Z, Han Y, Zhao M, Huang M and Wan C 2019 Adv. Mater. 31 1808222 [45] Zhong H, Yang M, Tang G and Yuan S 2020 ACS Energy Letters 5 2275 [46] Ni Y, Zhang D, Liu X, Wang H, Chen Y, Xia Y and Wang H 2021 The Journal of Chemical Physics 155 204701 [47] Gürel T, Sevik C and Çaǧn T 2011 Phys. Rev. B 84 205201 [48] Wu C W, Ren X, Xie G, Zhou W X, Zhang G and Chen K Q 2022 Phys. Rev. Applied 18 014053 [49] Zhang D and Hu Y 2021 Appl. Surf. Sci. 554 149608 [50] Zhang D, Hu Y, Zhong H, Yuan S and Liu C 2019 Nanoscale 11 13800 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|