A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波)1,2, Weijun Ren(任卫君)2,3, Ke Wang(王珂)4, Shuai Chen(陈帅)2, Lifa Zhang(张力发)5, Yuxiang Ni(倪宇翔)1,†, and Gang Zhang(张刚)2,‡
1 School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China; 2 Institute of High Performance Computing, A*STAR 138632, Singapore; 3 Center for Phononics and Thermal Energy Science, China-EU Joint Laboratory for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 4 School of Automation, Xi'an University of Posts and Telecommunications, Shaanxi 710121, China; 5 NNU-SULI Thermal Energy Research Center, and Center for Quantum Transport and Thermal Energy Science(CQTES), School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
Abstract The two-dimensional (2D) material-based thermal switch is attracting attention due to its novel applications, such as energy conversion and thermal management, in nanoscale devices. In this paper, we observed that the reversible 2H-1T' phase transition in MoTe2 is associated with about a fourfold/tenfold change in thermal conductivity along the X/Y direction by using first-principles calculations. This phenomenon can be profoundly understood by comparing the Mo-Te bonding strength between the two phases. The 2H-MoTe2 has one stronger bonding type, while 1T'-MoTe2 has three weaker types of bonds, suggesting bonding inhomogeneity in 1T'-MoTe2. Meanwhile, the bonding inhomogeneity can induce more scattering of vibration modes. The weaker bonding indicates a softer structure, resulting in lower phonon group velocity, a shorter phonon relaxation lifetime and larger Grüneisen constants. The impact caused by the 2H to 1T' phase transition in MoTe2 hinders the propagation of phonons, thereby reducing thermal conductivity. Our study describes the possibility for the provision of the MoTe2-based controllable and reversible thermal switch device.
Fund: We gratefully acknowledge the use of the computing resources at the Agency for Science, Technology and Research (A*STAR) and NSCC, Singapore. Project supported by the China Scholarship Council (Grant No. 202107000030), RIE2020 Advanced Manufacturing and Engineering (AME) Programmatic (Grant No. A1898b0043), and A*STAR Aerospace Programme (Grant No. M2115a0092).
Corresponding Authors:
Yuxiang Ni, Gang Zhang
E-mail: yuxiang.ni@swjtu.edu.cn;zhangg@ihpc.a-star.edu.sg
Cite this article:
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚) A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2 2023 Chin. Phys. B 32 050505
[1] Yu Y, Nam G H, He Q, Wu X J, Zhang K, Yang Z, Chen J, Ma Q, Zhao M and Liu Z 2018 Nat. Chem.10 638 [2] Qi K, Cui X, Gu L, Yu S, Fan X, Luo M, Xu S, Li N, Zheng L and Zhang Q 2019 Nat. Commun.10 1 [3] Yang R, Mei L, Zhang Q, Fan Y, Shin H S, Voiry D and Zeng Z 2022 Nat. Protocols17 358 [4] Ouyang B, Xiong S, Yang Z, Jing Y and Wang Y 2017 Nanoscale9 8126 [5] Zhou Y, Xiong S, Zhang X, Volz S and Hu M 2018 Nat. Commun.9 1 [6] Lai Z, He Q, Tran T H, Repaka D, Zhou D D, Sun Y, Xi S, Li Y, Chaturvedi A and Tan C 2021 Nat. Mater.20 1113 [7] Torres-Cavanillas R, Morant-Giner M, Escorcia-Ariza G, Dugay J, Canet-Ferrer J, Tatay S, Cardona-Serra S, Giménez-Marqués M, Galbiati M and Forment-Aliaga A 2021 Nat. Chem.13 1101 [8] Wang Y, Xiao J, Zhu H, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S, Shi W and Wang Y 2017 Nature550 487 [9] Li W, Qian X and Li J 2021 Nature Reviews Materials6 829 [10] Nasr J R, Simonson N, Oberoi A, Horn M W, Robinson J A and Das S 2020 ACS Nano14 15440 [11] Deng S, Luo M, Ai C, Zhang Y, Liu B, Huang L, Jiang Z, Zhang Q, Gu L and Lin S 2019 Angewandte Chemie International Edition58 16289 [12] Gant P, Huang P, de Lara D P, Guo D, Frisenda R and Castellanos-Gomez A 2019 Materials Today27 8 [13] Deng S, Yang F, Zhang Q, Zhong Y, Zeng Y, Lin S, Wang X, Lu X, Wang C Z and Gu L 2018 Adv. Mater.30 1802223 [14] Duerloo K A N, Li Y and Reed E J 2014 Nat. Commun.5 4214 [15] Yang X, Wang S, Wang C, Lu R, Zheng X, Zhang T, Liu M, Zheng J and Chen H 2022 ACS Applied Materials & Interfaces 14 4434 [16] Aryana K, Tomko J A, Gao R, Hoglund E R, Mimura T, Makarem S, Salanova A, Hoque M S B, Pfeifer T W and Olson D H 2022 Nat. Commun.13 1573 [17] Song S, Keum D H, Cho S, Perello D, Kim Y and Lee Y H 2016 Nano Lett.16 188 [18] Guan M X, Liu X B, Chen D Q, Li X Y, Qi Y P, Yang Q, You P W and Meng S 2022 Phys. Rev. Lett.128 015702 [19] Zhang D, Hu S, Sun Y, Liu X, Wang H, Wang H, Chen Y and Ni Y 2020 ES Energy & Environment 10 59 [20] Hafner J 2008 Journal of Computational Chemistry29 2044 [21] Ernzerhof M and Scuseria G E 1999 The Journal of Chemical Physics110 5029 [22] Zhang D, Wang K, Chen S, Zhang L, Ni Y and Zhang G 2023 Nanoscale15 1180 [23] Liu W H, Liu Q J, Zhong M, Gan Y D, Liu F S, Li X H and Tang B 2022 Acta Materialia236 118137 [24] Togo A and Tanaka I 2015 Scripta Materialia108 1 [25] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun.185 1747 [26] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun.5 4475 [27] Hou W, Azizimanesh A, Sewaket A, Peña T, Watson C, Liu M, Askari H and Wu S M 2019 Nat. Nanotech.14 668 [28] Zhou J, Zhu H, Liu T H, Song Q, He R, Mao J, Liu Z, Ren W, Liao B and Singh D J 2018 Nat. Commun.9 1 [29] Wang K, Zhou W, Cheng Y, Zhang M, Wang H and Zhang G 2021 Nanoscale13 10882 [30] Cammarata A and Rondinelli J M 2014 The Journal of Chemical Physics141 114704 [31] Shafique A and Shin Y H 2017 Physical Chemistry Chemical Physics19 32072 [32] He J, Li D, Ying Y, Feng C, He J, Zhong C, Zhou H, Zhou P and Zhang G 2019 npj Computational Materials5 47 [33] Pandey T, Peeters F and Milošvić M 2022 2D Materials9 015034 [34] Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S and Luo T 2019 Science Advances5 eaax3777 [35] Shin J, Sung J, Kang M, Xie X, Lee B, Lee K M, White T J, Leal C, Sottos N R and Braun P V 2019 Proc. Natl. Acad. Sci. USA116 5973 [36] Ishibe T, Kaneko T, Uematsu Y, Sato-Akaba H, Komura M, Iyoda T and Nakamura Y 2022 Nano Lett.22 6105 [37] Song H, Liu J, Liu B, Wu J, Cheng H M and Kang F 2018 Joule2 442 [38] Shiomi J, Esfarjani K and Chen G 2011 Phys. Rev. B84 104302 [39] Chang C and Zhao L D 2018 Materials Today Physics4 50 [40] Li K, Cheng Y, Dou M, Zeng W, Volz S and Xiong S 2022 Nanomaterials12 123 [41] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G 2020 Physics Reports860 1 [42] Zhong H, Huang K, Yu G and Yuan S 2018 Phys. Rev. B98 054104 [43] Zhang D, Hu S, Liu X, Chen Y, Xia Y, Wang H, Wang H and Ni Y 2020 ACS Applied Energy Materials4 357 [44] Yang J, Qian X, Pan W, Yang R, Li Z, Han Y, Zhao M, Huang M and Wan C 2019 Adv. Mater.31 1808222 [45] Zhong H, Yang M, Tang G and Yuan S 2020 ACS Energy Letters5 2275 [46] Ni Y, Zhang D, Liu X, Wang H, Chen Y, Xia Y and Wang H 2021 The Journal of Chemical Physics155 204701 [47] Gürel T, Sevik C and Çaǧn T 2011 Phys. Rev. B84 205201 [48] Wu C W, Ren X, Xie G, Zhou W X, Zhang G and Chen K Q 2022 Phys. Rev. Applied18 014053 [49] Zhang D and Hu Y 2021 Appl. Surf. Sci.554 149608 [50] Zhang D, Hu Y, Zhong H, Yuan S and Liu C 2019 Nanoscale11 13800
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.