1 State Key Laboratory Incubation Base of Photoelectric Technology and Functional Materials, National Photoelectric Technology, and Functional Materials and Application of Science and Technology International Cooperation Center, Institute of Photonics&Photon-Technology, Northwest University, Xi'an 710069, China; 2 China School of Electronic Engineering, Xi'an University of Posts&Telecommunications, Xi'an 710121, China
Abstract We report on a method to achieve multiple microscopic particles being trapped and manipulated transversely by using a size-tunable Bessel beam generated by cross-phase modulation (XPM) based on the thermal nonlinear optical effect. The results demonstrate that multiple polystyrene particles can be stably trapped simultaneously, and the number of the trapped particles can be controlled by varying the trapping beam power. In addition, the trapped particles can be manipulated laterally with micron-level precision by changing the size of J0 Bessel beam. This work provides a simple but efficient way to trap and manipulate multiple particles simultaneously, which would have potential applications in many fields such as cell sorting and transportation.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805200, 51927804, and 12104365), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JM-432), the Fund for Young Star in Science and Technology of Shaanxi Province, China (Grant No. 2021KJXX-27), and the Fund from the Education Department of Shaanxi Province, China (Grant No. 21JK0915).
Xiang-Lai Qiao(乔响来), Xue-Mei Cheng(程雪梅), Qian Zhang(张倩), Wen-Ding Zhang(张文定), Zhao-Yu Ren(任兆玉), and Jin-Tao Bai(白晋涛) Transverse manipulation of particles using Bessel beam of tunable size generated by cross-phase modulation 2023 Chin. Phys. B 32 048703
[1] Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett.11 288 [2] Ashkin A, Dziedzic J M and Yamane T 1987 Nature330 769 [3] Ojeda J F, Xie C, Li Y Q, Bertrand F E, Wiley J and McConnell T J 2006 Opt. Express14 5385 [4] Zhu C L and Li J 2015 Chin. Phys. Lett.32 108702 [5] Miles R E, Walker J S, Burnham D R and Reid J P 2012 Phys. Chem. Chem. Phys.14 3037 [6] Yang Y, Zhang G and Dai X 2020 Chin. Phys. B29 057302 [7] O'Neil A T, MacVicar I, Allen L and Padgett M J 2002 Phys. Rev. Lett.88 053601 [8] Huisken J and Stelzer E H K 2002 Opt. Lett.27 1223 [9] Gong Z, Pan Y L, Videen G and Wang C 2018 J. Quant. Spectrosc. Ra.214 94 [10] Tanaka Y 2013 J. Optics-uk15 025708 [11] Tanaka Y and Wakida S 2015 Biomed. Opt. Express6 3670 [12] Habaza M, Gilboa B, Roichman Y and Shaked N T 2015 Opt. Lett.40 1881 [13] Shaw L A, Panas R M, Spadaccini C M and Hopkins J B 2017 Opt. Lett.42 2862 [14] Chiou A E, Wang W, Sonek G J, Hong J and Berns M W 1997 Opt. Commun.133 7 [15] Mohammadnezhad M, Saeed S R and Hassanzadeh A 2019 J. Optics-uk21 105404 [16] Durnin J, Miceli J J and Eberly J H 1987 Phys. Rev. Lett.58 1499 [17] Xie Y, Lei T, Yang C, Du L and Yuan X 2019 Chin. Opt. Lett.17 090602 [18] Arlt J, Garcés-Chávez V, Sibbett W and Dholakia K 2001 Opt. Commun.197 239 [19] Garcés-Chávez V, McGloin D, Melville H, Sibbett W and Dholakia K 2002 Nature419 145 [20] Milne G, Dholakia K, McGloin D, Volke-Sepulveda K and Zemánek P 2007 Opt. Express15 13972 [21] Volke-Sepúlveda K, Chávez-Cerda S, Garcés-Chávez V and Dholakia K 2004 Josa. B21 1749 [22] Garcés-Chávez V, Volke-Sepulveda K, Chávez-Cerda S, Sibbett W and Dholakia K 2002 Phys. Rev. A66 063402 [23] Scott G and McArdle N 1992 Opt. Eng.31 2640 [24] Ayala Y A, Arzola A V and Volke-Sepulveda K 2016 Opt. Lett.41 614 [25] Zhang Q, Cheng X M, Chen H W, He B, Ren Z Y, Zhang Y and Bai J T 2017 Appl. Phys. Lett.111 161103 [26] Cheng X M, Zhang Q, Chen H W, He B, Ren Z Y, Zhang Y and Bai J T 2017 Opt. Express25 25257 [27] Ashkin A 1992 Biophys. J.61 569 [28] Wright W H, Sonek G J and Berns M W 1993 Appl. Phys. Lett.63 715 [29] Ambrosio L A and Hernández-Figueroa H E 2009 Opt. Express17 21918 [30] Gussgard R, Lindmo T and Brevik I 1992 Josa. B.9 1922 [31] Harada Y and Asakura T 1996 Opt. Commun.124 529 [32] He B, Cheng X M, Zhang H, Chen H W, Zhang Q, Ren Z Y and Bai J T 2018 Appl. Phys. Express11 052501 [33] Castaldo F, Paparo D and Santamato E 1997 Opt. Commun.143 57 [34] Zhang Q, Cheng X M, He B, Chen H W, Ren Z Y and Bai J T 2019 Opt. Laser Technol.119 105582 [35] Tiwari S K, Mishra S R, Ram S P and Rawat H S 2012 Appl. Opt.51 3718 [36] Rohrbach A, Tischer C, Neumayer D, Florin E L and Stelzer E H 2004 Rev. Sci. Instrum.75 2197 [37] Bobkova V, Stegemann J, Droop R, Otte E and Denz C 2021 Opt. Express29 12967
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.