Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 087104    DOI: 10.1088/1674-1056/19/8/087104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fast impurity solver for dynamical mean field theory based on second order perturbation around the atomic limit

Zhuang Jia-Ning(庄嘉宁)†ger, Liu Qing-Mei(刘青梅), Fang Zhong(方忠), and Dai Xi(戴希)
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  This paper proposes an impurity solver for the dynamical mean field theory (DMFT) study of the Mott insulators, which is based on the second order perturbation of the hybridization function. After careful benchmarking with quantum Monte Carlo results on the anti-ferromagnetic phase of the Hubbard model, it concludes that this impurity solver can capture the main physical features in the strong coupling regime and can be a very useful tool for the LDA (local density approximation) +DMFT studies of the Mott insulators with long range order.
Keywords:  dynamical mean field theory      impurity solver      Mott insulator      antiferromagnetic order  
Received:  16 November 2009      Revised:  02 March 2010      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.55.-i (Impurity and defect levels)  
  75.10.Lp (Band and itinerant models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10334090, 10425418, 60576058), and the National Basic Research Program of China (Grant No. 2007CB925000).

Cite this article: 

Zhuang Jia-Ning(庄嘉宁), Liu Qing-Mei(刘青梅), Fang Zhong(方忠), and Dai Xi(戴希) Fast impurity solver for dynamical mean field theory based on second order perturbation around the atomic limit 2010 Chin. Phys. B 19 087104

[1] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[2] Fang Z and Nagaosa N 2004 Phys. Rev. Lett. 93 176404
[3] Gutzwiller M C 1965 Phys. Rev. A 137 1726
[4] Vollhardt Dieter 1984 Rev. Mod. Phys. 56 99
[5] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[6] Mott N F 1990 Metal Insulator Transitions (London: Taylor and Francis)
[7] Tsuda, N, Nasu K, Yanase A and Siratori K 1991 % Electronic Conduction in Oxides: Springer Series in Solid State Sciences 94 (Berlin: Springer-Verlag)
[8] Kancharla S S and Dagotto E 2007 Phys. Rev. Lett. 98 016402
[9] Si Qimiao, Rabello Silvio, Ingersent Kevin and Lleweilun Smithm J 2001 Nature 413 804
[10] Gegenwart Philipp, Si Qimiao and Steglich Frank 2007 arXiv:0712.2045v2
[11] Caffarel Michel and Krauth Werner 1994 Phys. Rev. Lett. 72 1545
[12] Capone M, Fabrizio M, Castellani C and Tosatti E 2004 Phys. Rev. Lett. 93 047001
[13] Laloux L, Georges A and Krauth W 1994 Phys. Rev. B 50 3092
[14] Held K, Ulmke M, Bl"umer N and Vollhardt D 1997 Phys. Rev. B 56 14469
[15] Hirsch, J E and Fye R M 1986 Phys. Rev. Lett. 56 2521
[16] Werner P, Comanac A, de' Medici L, Troyer M and Millis A J 2006 Phys. Rev. Lett. 97 076405
[17] Rubtsov A N, Savkin V V and Lichtenstein A I 2005 Phys. Rev. B 72 035122
[18] Dai X, Savrasov S Y, Kotliar G, Migliori A, Ledbetter H and Abrahams E 2003 Science 300 953
[19] Haule K, Shim J H and Kotliar G 2008 Phys. Rev. Lett. 100 226402
[20] Savrasov S Y, Oudovenko V, Haule K, Villani D, and Kotliar G 2004 arXiv:cond-mat/0410410v1
[21] Han M J, Wan X and Savrasov S Y arXiv:0806.0408v1
[22] Jeschke H O and Kotliar G 2005 Phys. Rev. B 71 085103
[23] Rozenberg M J, Kotliar G and Zhang X Y 1994 Phys. Rev. B 49 10181
[24] Savrasov S Y, Oudovenko V, Haule K, Villani D and Kotliar G 2005 Phys. Rev. B 71 115117
[25] Chioncel L, Vitos L, Abrikosov I A, Kollar J, Katsnelson M I and Lichtenstein A I 2003 Phys. Rev. B 67 235106
[26] Drchal V, Janivs V, Kudrnovsk J, Oudovenko V S, Dai X, Haule K and Kotliar G 2005 J. Phys.: Cond. Matt. 17 61
[27] Jarrell M and Pruschke Th 1994 Phys. Rev. B 49 1458
[28] Haule K, Oudovenko V, Savrasov S Y and Kotliar G 2005 Phys. Rev. Lett. 94 036401
[29] H"ulsenbeck G and Stephan F 1997 Z. Phys. B 94 281
[30] Dai X, Haule K and Kotliar G 2005 Phys. Rev. B 72 045111
[31] Bickers N E 1987 Rev. Mod. Phys. 59 4
[32] Bulla R, Hewson A C and Pruschke Th 1998 J. Phys.: Condens. Matter 10 8365
[33] Zitzler R, Pruschke Th and Bulla R 2002 Eur. Phys. J. B 27 473
[34] Bauera J and Hewson A C 2007 Eur. Phys. J. B 57 235
[35] Du J H, Fang M H, Wang H D, Yang J H and Zhang Z J 2008 Acta Phys. Sin. 57 2409 (in Chinese)
[36] Anderson P W 1963 Solid State Physics (New York: Academic Press) Vol. 14, p. 99
[37] Rushbrooke G S, Baker G A and Wood P J 1974 Phase Transitions and Critical Phenomena ed. by Domb C and Green M S (New York: Academic Press) Vol. 3
[38] Staudt R, Dzierzawa M and Muramatsu A 2000 Eur. Phys. J. B 17 411
[39] Patrick Fazekas 1999 Lectures Notes on Electron Correlation and Magnetism (Singapore: Uto-Print)
[40] Li Z Z 1985 The Solid State Theory (High Education Press) (in Chinese)
[41] B"unemann J, Weber W and Gebhard F 1998 Phys. Rev. B 57 6896
[42] Sugano S, Tanabe Y and Kamimura H 1970 Multiplets of Transtition-Metal Ions in Crystals, Pure and Applied Physics Vol. 33 (New York: Academic Press)
[1] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[2] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[3] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[4] Quantum Monte Carlo study of hard-core bosons in Creutz ladder with zero flux
Yang Lin(林洋), Weichang Hao(郝维昌), Huaiming Guo(郭怀明). Chin. Phys. B, 2018, 27(1): 010204.
[5] Kernel polynomial representation for imaginary-time Green's functions in continuous-time quantum Monte Carlo impurity solver
Li Huang(黄理). Chin. Phys. B, 2016, 25(11): 117101.
[6] Effect of interaction and temperature on quantum phase transition in anisotropic square-octagon lattice
Bao An (保安), Zhang Xue-Feng (张雪峰), Zhang Xiao-Zhong (章晓中). Chin. Phys. B, 2015, 24(5): 050310.
[7] Physics picture from neutron scattering study on Fe-based superconductors
Bao Wei (鲍威). Chin. Phys. B, 2013, 22(8): 087405.
[8] Magnetic phase transitions and large mass enhancement in single crystal CaFe4As3
Zhang Xiao-Dong(张晓冬), Wu Wei(吴伟), Zheng Ping(郑萍), Wang Nan-Lin(王楠林), and Luo Jian-Lin(雒建林) . Chin. Phys. B, 2012, 21(1): 017402.
[9] Generalization of iterative perturbation theory and coherent potential approximation (ITP+CPA) to double exchange model with orbital degeneracy
Liu Zi-Xin(刘自信), Wen Sheng-Hui(文生辉), and Li Ming(李明). Chin. Phys. B, 2008, 17(6): 2277-2280.
[10] Interface dipole induced by asymmetric exchange effect in Mott-insulator/Mott-insulator heterojunction
Hao Lei (郝 雷), Wang Jun(汪 军). Chin. Phys. B, 2008, 17(11): 4305-4311.
No Suggested Reading articles found!