Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 010507    DOI: 10.1088/1674-1056/ac5e95
GENERAL Prev   Next  

Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability

Xiaodong Jiao(焦晓东)1, Mingfeng Yuan(袁明峰)2, Jin Tao(陶金)1,†, Hao Sun(孙昊)1,‡, Qinglin Sun(孙青林)1, and Zengqiang Chen(陈增强)1
1 College of Artificial Intelligence, Nankai University, Tianjin 300350, China;
2 Department of Earth and Space Science and Engineering, York University, Toronto M3 J 1P3, Canada
Abstract  Memristor chaotic systems have aroused great attention in recent years with their potentials expected in engineering applications. In this paper, a five-dimension (5D) double-memristor hyperchaotic system (DMHS) is modeled by introducing two active magnetron memristor models into the Kolmogorov-type formula. The boundness condition of the proposed hyperchaotic system is proved. Coexisting bifurcation diagram and numerical verification explain the bistability. The rich dynamics of the system are demonstrated by the dynamic evolution map and the basin. The simulation results reveal the existence of transient hyperchaos and hidden extreme multistability in the presented DMHS. The NIST tests show that the generated signal sequence is highly random, which is feasible for encryption purposes. Furthermore, the system is implemented based on a FPGA experimental platform, which benefits the further applications of the proposed hyperchaos.
Keywords:  extreme multistability      memristor-based hyperchaos      hidden attractor      FPGA implementation  
Received:  20 January 2022      Revised:  04 March 2022      Accepted manuscript online:  17 March 2022
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62003177, 61973172, 61973175, and 62073177), the key Technologies Research and Tianjin Natural Science Foundation (Grant No. 19JCZDJC32800), China Postdoctoral Science Foundation (Grant Nos. 2020M670633 and 2020M670045), and Academy of Finland (Grant No. 315660).
Corresponding Authors:  Jin Tao, Hao Sun     E-mail:  taoj@nankai.edu.cn;unh@nankai.edu.cn

Cite this article: 

Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强) Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability 2023 Chin. Phys. B 32 010507

[1] Lin H R, Wang C H, Sun Y H and Yao W 2020 Nonlin. Dyn. 100 3667
[2] Chen C J, Min F H, Zhang Y Z and Bao B C 2021 Nonlin. Dyn. 106 2559
[3] Min F H, Zhang W, Ji Z Y and Zhang L 2021 Chaos Solit. Fract. 152 111369
[4] Wang N, Zhang G and Bao H 2019 Nonlin. Dyn. 97 1477
[5] Bao H, Liu W B and Chen M 2019 Chaos Solit. Fract. 96 1879
[6] Bao B, Bao H and Wang N 2017 Chaos Solit. Fract. 99 022213
[7] Lin H R, Wang C H, Yao W and Tan Y M 2020 Commun. Nonlinear Sci. 90 105390
[8] Danilin S N, Karmakar B, Shchanikov S A and Galushkin A I 2015 IEEE International Siberian Conference on Control Communications 1-6
[9] Abunahla H, Shehada D and Yeun C Y 2017 IEEE International Midwest Symposium on Circuits Systems
[10] Peng G Y, Min F H and Wang E R 2018 J. Electric. Comput. Engineer. 2018 1
[11] Peng G Y and Min F H 2017 Nonlin. Dyn. 90 1607
[12] Li C, Min F H and Li C B 2018 Nonlin. Dyn. 94 2785
[13] Zhang Y Z, Liu Z, Wu H G, Chen S Y and Bao B C 2019 Chaos Solit. Fract. 127 354
[14] Mezatio B A, Motchongom M T and Wafo Tekam B R 2019 Chaos Solit. Fract. 120 100
[15] Wu R and Wang C 2010 Int. J. Bifurcation Chaos 26 1650145
[16] Jiang Y C, Li C B, Zhang C, Zhao Y B and Zang H Y 2021 IEEE T. Circuits 68 4935
[17] Zhang X, Li C B, Chen Y D, Iu H and Lei T F 2020 Chaos Solit. Fract. 139 110000
[18] Vaidyanathan S, Pham V T and Volos C K 2014 Journal of Engineering Science and Technology Review 8 205
[19] Panahi S 2019 Analog Integrated Circuits and Signal Processing 98 85
[20] Messias M and Reinol A C 2017 Nonlin. Dyn. 88 1
[21] Lin H R, Wang C H and Tan Y M 2020 Nonlinear Dyn. 99 2369
[22] Li C and Sprott J C 2018 Int. J. Bifurcation Chaos 24 1450034
[23] Jafari S, Sprott J C and Nazarimehr F 2015 Euro. Phys. J. Spec. Top. 224 1469
[24] Zhang S, Zeng Y C, Li Z J and Zhou C Y 2018 Int. J. Bifurcation Chaos 28 185016
[25] Bi H Y, Qi, G Y, Hu J B, Faradja P and Chen G R 2020 Chaos Solit. Fract. 138 109815
[26] Dong E Z, Jiao X D and Du S Z 2020 Complexity 2020 1
[27] Dong E Z, Yuan M F, Zhang C, Tong J G, Chen Z Q and Du S Z 2018 Int. J. Bifurcation Chaos 28 1850081
[28] Zhang S, Zeng Y C and Li Z J 2018 Chaos 28 013113
[29] Chang H, Li Y, Chen G R and Yuan F 2020 Int. J. Bifurcation Chaos 30 434
[30] Wang N, Zhang G S, Kuznetsov N and Bao H 2020 Commun. Nonlinear Sci. 92 105494
[31] Faradja P and Qi G Y 2020 Chaos Solit. Fract. 132
[32] Pham V T, Vaidyanathan S and Volos C K 2015 Euro. Phys. J. Spec. Top. 224 1507
[33] Vaidyanathan S, Pham V T and Volos C K 2014 J. Engineer. Techn. Rev. 8 205
[34] Chen L and Aihara K 1995 Neural Networks 8 915
[35] Cang S J and Qi G Y 2010 Nonlin. Dyn. 59 515
[36] Bao B, Jiang T and Wang G Y 2017 Nonlin. Dyn. 89 1157
[37] Yuan F, Wang G Y and Wang X W 2016 Chaos 26 073107
[38] Dong E Z, Yuan M F and Du S Z 2019 Appl. Math. Model. 73 40
[39] Rukhin A and Soto J 2001 National Institute of Standards and Technology, Technology Administration U.S. Department of Commerce 800-822
[1] A class of two-dimensional rational maps with self-excited and hidden attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超),Hai-Bo Jiang(姜海波), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(3): 030503.
[2] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[3] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[4] Heterogeneous dual memristive circuit: Multistability, symmetry, and FPGA implementation
Yi-Zi Cheng(承亦梓), Fu-Hong Min(闵富红), Zhi Rui(芮智), and Lei Zhang(张雷). Chin. Phys. B, 2021, 30(12): 120502.
[5] Continuous non-autonomous memristive Rulkov model with extreme multistability
Quan Xu(徐权), Tong Liu(刘通), Cheng-Tao Feng(冯成涛), Han Bao(包涵), Hua-Gan Wu(武花干), and Bo-Cheng Bao(包伯成). Chin. Phys. B, 2021, 30(12): 128702.
[6] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
[7] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[8] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[9] A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors
Yan-Xia Tang(唐妍霞), Abdul Jalil M Khalaf, Karthikeyan Rajagopal, Viet-Thanh Pham, Sajad Jafari, Ye Tian(田野). Chin. Phys. B, 2018, 27(4): 040502.
[10] A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control
J P Singh, V T Pham, T Hayat, S Jafari, F E Alsaadi, B K Roy. Chin. Phys. B, 2018, 27(10): 100501.
[11] Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium
Jianghong Bao(鲍江宏), Dandan Chen(陈丹丹). Chin. Phys. B, 2017, 26(8): 080201.
[12] Multi-scroll hidden attractors and multi-wing hidden attractors in a 5-dimensional memristive system
Xiaoyu Hu(胡晓宇), Chongxin Liu(刘崇新), Ling Liu(刘凌), Yapeng Yao(姚亚鹏), Guangchao Zheng(郑广超). Chin. Phys. B, 2017, 26(11): 110502.
[13] Study on a new chaotic bitwise dynamical system and its FPGA implementation
Wang Qian-Xue (王倩雪), Yu Si-Min (禹思敏), C. Guyeux, J. Bahi, Fang Xiao-Le (方晓乐). Chin. Phys. B, 2015, 24(6): 060503.
[14] Complex transient dynamics of hidden attractors in a simple4D system
Dang Xiao-Yu (党小宇), Li Chun-Biao (李春彪), Bao Bo-Cheng (包伯成), Wu Hua-Gan (武花干). Chin. Phys. B, 2015, 24(5): 050503.
[15] Design and FPGA Implementation of a new hyperchaotic system
Wang Guang-Yi(王光义), Bao Xu-Lei(包旭雷), and Wang Zhong-Lin(王忠林). Chin. Phys. B, 2008, 17(10): 3596-3602.
No Suggested Reading articles found!