INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Very long wavelength infrared focal plane arrays with 50% cutoff wavelength based on type-II InAs/GaSb superlattice |
Xi Han(韩玺)1,2, Wei Xiang(向伟)1,2, Hong-Yue Hao(郝宏玥)1,2, Dong-Wei Jiang(蒋洞微)1,2, Yao-Yao Sun(孙姚耀)1,2, Guo-Wei Wang(王国伟)1,2, Ying-Qiang Xu(徐应强)1,2, Zhi-Chuan Niu(牛智川)1,2 |
1. State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2. Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract A very long wavelength infrared(VLWIR) focal plane array based on InAs/GaSb type-II super-lattices is demonstrated on a GaSb substrate. A hetero-structure photodiode was grown with a 50% cut-off wavelength of 15.2 μm, at 77 K. A 320×256 VLWIR focal plane array with this design was fabricated and characterized. The peak quantum efficiency without an antireflective coating was 25.74% at the reverse bias voltage of -20 mV, yielding a peak specific detectivity of 5.89×1010 cm·Hz1/2·W-1. The operability and the uniformity of response were 89% and 83.17%. The noise-equivalent temperature difference at 65 K exhibited a minimum at 21.4 mK, corresponding to an average value of 56.3 mK.
|
Received: 18 July 2016
Revised: 18 October 2016
Accepted manuscript online:
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
73.21.Cd
|
(Superlattices)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB932904 and 2011CB922201), the National Special Funds for the Development of Major Research Equipment and Instruments, China (Grant No. 2012YQ140005), and the National Natural Science Foundation of China (Grant Nos. 61274013, 61290303, and 61306013). |
Corresponding Authors:
Zhi-Chuan Niu
E-mail: zcniu@semi.ac.cn
|
Cite this article:
Xi Han(韩玺), Wei Xiang(向伟), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Yao-Yao Sun(孙姚耀), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川) Very long wavelength infrared focal plane arrays with 50% cutoff wavelength based on type-II InAs/GaSb superlattice 2017 Chin. Phys. B 26 018505
|
[1] |
Esaki L and Tsu R 1970 IBM J. Res. Dev. 14 61
|
[2] |
Johnson J L, Samoska L A, Gossard A C, Merz J L, Jack M D, Chapman G R, Baumgratz B A, Kosai K and Johnson S M 1996 J. Appl. Phys. 80 1116
|
[3] |
Mohseni H, Tahraoui A, Wojkowski J, Razeghi M, Brown G J, Mitchel W C and Park Y S 2000 Appl. Phys. Lett. 77 1572
|
[4] |
Wei Y J and Razeghi M 2004 Phys. Rev. B 69 085316
|
[5] |
Nguyen B M, Chen G X, Hoang M A and Razeghi M 2011 IEEE J. Quantum Electron. 47 686
|
[6] |
Bogdanov S, Nguyen B M, Hoang A M and Razeghi M 2011 Appl. Phys. Lett. 98 183501
|
[7] |
Hood A, Delaunay P Y, Hoffman D, Nguyen B M, Wei Y J, Razeghi M and Nathan V 2007 Appl. Phys. Lett. 90 233513
|
[8] |
Delaunay P Y, Nguyen B M, Hoffman D, Huang E K and Razeghi M 2009 IEEE J. Quantum Electron. 45 157
|
[9] |
Wang G W, Xiang W, Xu Y Q, Zhang L, Peng Z Y, Lü Y Q, Si J J, Wang J, Xing J L, Ren Z W and Niu Z C 2013 J. Semicond. 34 114012
|
[10] |
Razeghi M, Nguyen B M, Hoffman D, Delaunay P Y, Huang E K, Tidrow M and Nathan V 2008 Proc. SPIE 7082 708204
|
[11] |
Hood A, Hoffman D, Nguyen B M, Delaunay P Y, Michel E and Razeghi M 2006 Appl. Phys. Lett. 89 093506
|
[12] |
Mou S, Li J V and Chuang S L 2009 IEEE IEEE J. Quantum Electron. 45 737
|
[13] |
Jiang D W, Guo F Y, Xiang W, Hao H Y, Wang G W, Xu Y Q, Yu Q J, Niu Z C and Zhao L C 2014 Proc. SPIE 9300 93001L
|
[14] |
Nguyen B M, Razeghi M, Nathan V and Brown G J 2007 Proc. SPIE 6479 64790S
|
[15] |
Hoffman D, Nguyen B M, Huang E K, Delaunay P Y, Razeghi M, Tidrow M Z and Pellegrino J 2008 Appl. Phys. Lett. 93 031107
|
[16] |
Nguyen B M, Hoffman D, Delaunay P Y and Razeghi M 2007 Appl. Phys. Lett. 91 163511
|
[17] |
Jiang D W, Xiang W, Guo F Y, Hao H Y, Han X, Li X C, Wang G W, Xu Y Q, Yu Q J and Niu Z C 2016 Appl. Phys. Lett. 108 121110
|
[18] |
Hao H Y, Wang G W, Xiang W, Han X, Xu Y Q, Liao Y P, Zhang Y, Ren Z W, Ni H Q, He Z H and Niu Z C 2015 Infrared Phys. Technol. 72 276
|
[19] |
Kutty M N, Plis E, Khoshakhlagh A, Myers S, Gautam N, Smolev S, Sharma Y D, Dawson R, Krishna S, Lee S J and Noh S K 2010 J. Electron. Mater. 39 2203
|
[20] |
Hood A, Hoffman D, Nguyen B M, Delaunay P Y, Michel E and Razeghi M 2006 Appl. Phys. Lett. 89 093506
|
[21] |
Miura K, Machinaga K, Balasekaran S, Kawahara T, Migita M, Inada H, Iguchi Y, Sakai M, Murooka J, Katayama H and Kimata M 2016 Proc. SPIE 9819 98190V
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|