CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Current spin polarization of a platform molecule with compression effect |
Zhi Yang(羊志)1, Feng Sun(孙峰)1, Deng-Hui Chen(陈登辉)1, Zi-Qun Wang(王子群)2, Chuan-Kui Wang(王传奎)1, Zong-Liang Li(李宗良)1,†, and Shuai Qiu(邱帅)1,‡ |
1 Shandong Key Laboratory of Medical Physics and Image Processing&Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China; 2 Zao Zhuang University, Zao Zhuang 277160, China |
|
|
Abstract Using the first-principles method, the spin-dependent transport properties of a novel platform molecule containing a freestanding molecular wire is investigated by simulating the spin-polarized scanning tunneling microscope experiment with Ni tip and Au substrate electrodes. Transport calculations show that the total current increases as the tip gradually approaches to the substrate, which is consistent with the conductance obtained from previous experiment. More interestingly, the spin polarization (SP) of current modulated by compression effect has the completely opposite trend to the total current. Transmission analyses reveal that the reduction of SP of current with compression process originates from the promotion of spin-down electron channel, which is controlled by deforming the molecule wire. In addition, the density of states shows that the SP of current is directly affected by the organic-ferromagnetic spinterface. The weak orbital hybridization between the Ni tip and propynyl of molecule results in high interfacial SP, whereas the breaking of the C $\equiv$ C triple of propynyl in favor of the Ni-C-C bond induces the strong orbital hybridization and restrains the interfacial SP. This work proposes a new way to control and design the SP of current through organic-ferromagnetic spinterface using functional molecular platform.
|
Received: 16 December 2021
Revised: 13 January 2022
Accepted manuscript online: 27 January 2022
|
PACS:
|
72.25.-b
|
(Spin polarized transport)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974217 and 11874242) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018MA037). |
Corresponding Authors:
Zong-Liang Li, Shuai Qiu
E-mail: lizongliang@sdnu.edu.cn;shuaiqiu@sdnu.edu.cn
|
Cite this article:
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅) Current spin polarization of a platform molecule with compression effect 2022 Chin. Phys. B 31 077202
|
[1] Naber W J M, Faez S and Wiel W G V 2007 J. Phys. D:Appl. Phys. 40 R205 [2] Sanvito S 2011 Chem. Soc. Rev. 40 3336 [3] Lv X R, Liang S H, Tao L L and Han X F 2014 Spin 4 1440013 [4] Gu X R, Guo L D and Sun X N 2018 Chin. Phys. B 27 107202 [5] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I L, Diény B, Pirro P and Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711 [6] Rocha A R, Garcia-Suarez V M, Bailey S W, Lambert C J, Ferrer J and Sanvito S 2005 Nat. Mater. 4 335 [7] Sun D, Ehrenfreund E and Valy Z V 2014 Chem. Commun. 50 1781 [8] Sanvito S 2010 Nat. Phys. 6 562 [9] Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F and Fert A 2010 Nat. Phys. 6 615 [10] Sun M and Mi W 2018 J. Mater. Chem. C 6 6619 [11] Cinchetti M, Dediu V A and Hueso L E 2017 Nat. Mater. 16 507 [12] Delprat S, Galbiati M, Tatay S, Quinard B, Barraud C, Petroff F, Seneor P and Mattana R 2018 J. Phys. D:Appl. Phys. 51 473001 [13] Galbiati M, Tatay S, Barraud C, Dediu A V, Petroff F, Mattana R and Seneor P 2014 MRS Bull. 39 602 [14] Guo L, Gu X, Zhu X and Sun X 2019 Adv. Mater. 31 1805355 [15] Raman K V, Kamerbeek A M, Mukherjee A, Atodiresei N, Sen T K, Lazic P, Caciuc V, Michel R, Stalke D, Mandal S K, Blügel S, Münzenberg M and Moodera J S 2013 Nature 493 509 [16] Li D and Smogunov A 2021 Phys. Rev. B 103 085432 [17] Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K and Hu G C 2020 J. Phys. Chem. C 124 12144 [18] Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K and Hu G C 2020 J. Mater. Sci. 55 16311 [19] Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K and Hu G C 2019 J. Magn. Magn. Mater. 479 247 [20] Li S, Wang Y D, Wang Y F, Sanvito S and Hou S M 2021 J. Phys. Chem. C 125 6945 [21] Li D, Banerjee R, Mondal S, Maliyov I, Romanova M, Dappe Y J and Smogunov A 2019 Phys. Rev. B 99 115403 [22] Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K and Li Z L 2021 Physica E 128 114542 [23] Koley S and Chakrabarti S 2017 J. Phys. Chem. C 121 21695 [24] Deng Y X, Chen S Z, Zeng Y, Zhou W X and Chen K Q 2017 Org. Electron. 50 184 [25] Cardona-Serra S, Gaita-Ariño A, Stamenova M and Sanvito S 2017 J. Phys. Chem. Lett. 8 3056 [26] Dhungana K B and Pati R 2014 Appl. Phys. Lett. 104 162404 [27] Zhao W K, Zou D Q, Yang C L and Sun Z P 2017 J. Mater. Chem. C 5 8862 [28] Wang Z Q, Tang F, Dong M M, Wang M L, Hu G C, Leng J C, Wang C K and Zhang G P 2020 Chin. Phys. B 29 067202 [29] Jasper-Tönnies T, Garcia-Lekue A, Frederiksen T, Ulrich S, Herges R and Berndt R 2017 Phys. Rev. Lett. 119 066801 [30] Wei Z M, Wang X T, Borges A, Santella M, Li T, Sorensen J K, Vanin M, Hu W P, Liu Y Q, Ulstrup J, Solomon G C, Chi Q J, Bjornholm T, Norgaard K and Laursen B W 2014 Langmuir 30 14868 [31] Jasper-Tönnies T, Garcia-Lekue A, Frederiksen T, Ulrich S, Herges R and Berndt R 2019 J. Phys.:Condens. Matter 31 18LT01 [32] Jasper-Tönnies T, Weismann A, Frederiksen T, Garcia-Lekue A, Ulrich S, Herges R and Berndt R 2019 Phys. Rev. B 99 245417 [33] Jasper-Tönnies T, Poltavsky I, Ulrich S, Moje T, Tkatchenko A, Herges R and Berndt R 2018 J. Chem. Phys. 149 244705 [34] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 [35] José M S, Emilio A, Julian D G, Alberto G, Javier J, Pablo O and Daniel S P 2002 J. Phys.:Condens. Matter 14 2745 [36] Atomistix ToolKit version 2018.06, Synopsys QuantumWise A/S (www.quantumwise.com) [37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [38] Troullier N and Martins J 1990 Solid State Commun. 74 613 [39] Liu R, Bi J J, Xie Z, Yin K, Wang D, Zhang G P, Xiang D, Wang C K and Li Z L 2018 Phys. Rev. Appl. 9 54023 [40] Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z and Wang C K 2017 Chin. Phys. B 26 098508 [41] Landauer R 1970 Philos. Mag. 21 863 [42] Larade B, Taylor J, Zheng Q R, Mehrez H, Pomorski P and Guo H 2001 Phys. Rev. B 64 195402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|