Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 065207    DOI: 10.1088/1674-1056/ac6011
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas

Hui Li(李慧)1,2, Jiquan Li(李继全)2,†, Zhengxiong Wang(王正汹)1,‡, Lai Wei(魏来)1, and Zhaoqing Hu(胡朝清)2
1 Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China;
2 Southwestern Institute of Physics, Chengdu 610041, China
Abstract  The structural characteristics of zonal flows and their roles in the nonlinear interaction of multi-scale multi-mode turbulence are investigated numerically via a self-consistent Landau-fluid model. The multi-mode turbulence here is composed of a shorter wavelength electromagnetic (EM) ion temperature gradient (ITG) mode and a Kelvin-Helmholtz (KH) instability with long wavelengths excited by externally imposed small-scale shear flows. For strong shear flow, a prominent periodic intermittency of fluctuation intensity except for dominant ITG component is revealed in turbulence evolution, which onset time depends on the ion temperature gradient and the shear flow amplitudes corresponding to different KH instabilities. It is identified that the intermittency phenomenon results from the zonal flow dynamics, which is mainly generated by the KH mode and back-reacts on it. It is demonstrated that the odd symmetric components of zonal flow (same symmetry as the external flow) make the radial parity of the KH mode alteration through adjusting the drift velocities at two sides of the resonant surface so that the KH mode becomes bursty first. Afterwards, the ITG intermittency follows due to nonlinear mode coupling. Parametric dependences of the features of the intermittency are elaborated. Finally, associated turbulent heat transport is evaluated.
Keywords:  drift waves      turbulence      nonlinear phenomena      plasma simulation  
Received:  23 December 2021      Revised:  14 March 2022      Accepted manuscript online:  23 March 2022
PACS:  52.35.Kt (Drift waves)  
  52.35.Ra (Plasma turbulence)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.65.-y (Plasma simulation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFE0301200 and 2017YFE0301201), partially by the National Natural Science Foundation of China (Grant Nos. 11775069 and 11925501), and the Liaoning Revitalization Talents Program (Grant No. XLYC1802009).
Corresponding Authors:  Jiquan Li, Zhengxiong Wang     E-mail:  lijq@swip.ac.cn;zxwang@dlut.edu.cn

Cite this article: 

Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清) Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas 2022 Chin. Phys. B 31 065207

[1] Hornsby W A, Peeters A G, Siccinio M and Poli E 2012 Phys. Plasmas 19 032308
[2] Muraglia M, Agullo O, Benkadda S, et al. 2009 Phys. Rev. Lett. 103 145001
[3] Wei L, Wang Z X, Li J Q, et al. 2019 Chin. Phys. B 28 125203
[4] Bardóczi L, Rhodes T L, Carter T A, et al. 2016 Phys. Rev. Lett. 116 215001
[5] Wang Z, Tang W and Wei L 2022 Plasma Sci. Technol. 24 033001
[6] Sun P J, Li Y D, Ren Y, et al. 2017 Nucl. Fusion 58 016003
[7] Jiang M, Xu H Y, Shi Z B, et al. 2020 Plasma Sci. Technol. 22 080501
[8] Chen W and Wang Z X 2020 Chin. Phys. Lett. 37 125001
[9] Wang F, Zhao R, Wang Z X, et al. 2021 Chin. Phys. Lett. 38 055201
[10] Liu T, Wei L, Wang F, et al. 2021 Chin. Phys. Lett. 38 045204
[11] Wang Z X, Li J Q, Dong J Q, et al. 2009 Phys. Rev. Lett. 103 015004
[12] Choi M J, Kim J, Kwon J M, et al. 2017 Nucl. Fusion 57 126058
[13] Jiang M, Zhong W L, Xu Y, et al. 2017 Nucl. Fusion 58 026002
[14] Terry P W 2000 Rev. Mod. Phys. 72 109
[15] Buangam W, Garcia J, Onjun T, et al. 2020 Plasma Sci. Technol. 22 065101
[16] Burrell K H 1997 Phys. Plasmas 4 1499
[17] Chandra D, Sen A, Kaw P, et al. 2005 Nucl. Fusion 45 524
[18] Horton W, Tajima T and Kamimura T 1987 Phys. Fluids 30 3485
[19] López Zazueta A and Zavala Sansón L 2018 Phys. Fluids 30 044101
[20] Hu Z Q, Wang Z X, Wei L, et al. 2015 Nucl. Fusion 56 016012
[21] Zhao K J, Dong J Q, Li J Q, et al. 2018 Plasma Sci. Technol. 20 094006
[22] Wang W J, Zhou D and Ming Y 2019 Plasma Sci. Technol. 21 015101
[23] Tang W M 1978 Nucl. Fusion 18 1089
[24] Zemedkun S E, Che S, Chen Y, et al. 2015 Phys. Plasmas 22 122508
[25] Xiao Y, Holod I, Zhang W, et al. 2010 Phys. Plasmas 17 022302
[26] Ernst D R, Lang J, Nevins W M, et al. 2009 Phys. Plasmas 16 055906
[27] Kobayashi S and Rogers B N 2012 Phys. Plasmas 19 012315
[28] Palermo F, Garbet X, Ghizzo A, et al. 2015 Phys. Plasmas 22 042304
[29] Rogers B N, Dorland W and Kotschenreuther M 2000 Phys. Rev. Lett. 85 5336
[30] Bierwage A, Yu Q Q and Günter S 2007 Phys. Plasmas 14 010704
[31] Zhang W, Wa Z W, Lu X Q, et al. 2020 Nucl. Fusion 60 126022
[32] Wang L and Hahm T S 2009 Phys. Plasmas 16 082302
[33] Anderson J, Nordman H, Singh R, et al. 2006 Plasma Phys. Controlled Fusion 48 651
[34] Xiao Y and Lin Z 2009 Phys. Rev. Lett. 103 085004
[35] Li H, Li J, Wang Z, et al. 2020 Phys. Plasmas 27 082304
[36] Li J, Kishimoto Y, Wang Z X, et al. 2009 Nucl. Fusion 49 095007
[37] Li J Q and Kishimoto Y 2004 Phys. Plasmas 11 1493
[38] Mao A, Li J, Kishimoto Y, et al. 2013 Phys. Plasmas 20 022114
[39] Zhang W, Ma Z W, Zhu J, et al. 2019 Plasma Phys. Control. Fusion 61 075002
[40] Holland C and Diamond P H 2002 Phys. Plasmas 9 3857
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[3] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[4] Estimation of co-channel interference between cities caused by ducting and turbulence
Kai Yang(杨凯), Zhensen Wu(吴振森), Xing Guo(郭兴), Jiaji Wu(吴家骥), Yunhua Cao(曹运华), Tan Qu(屈檀), and Jiyu Xue(薛积禹). Chin. Phys. B, 2022, 31(2): 024102.
[5] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[6] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[7] The role of velocity derivative skewness in understanding non-equilibrium turbulence
Feng Liu(刘锋), Le Fang(方乐), and Liang Shao(邵亮)$. Chin. Phys. B, 2020, 29(11): 114702.
[8] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[9] Properties of multi-Gaussian Schell-model beams carrying an edge dislocation propagating in oceanic turbulence
Da-Jun Liu(刘大军), Yao-Chuan Wang(王耀川), Gui-Qiu Wang(王桂秋), Hong-Ming Yin(尹鸿鸣), Hai-Yang Zhong(仲海洋). Chin. Phys. B, 2019, 28(10): 104207.
[10] Reversed rotation of limit cycle oscillation and dynamics of low-intermediate-high confinement transition
Dan-Dan Cao(曹丹丹), Feng Wan(弯峰), Ya-Juan Hou(侯雅娟), Hai-Bo Sang(桑海波), Bai-Song Xie(谢柏松). Chin. Phys. B, 2018, 27(6): 065201.
[11] Influence of moderate-to-strong anisotropic non-Kolmogorov turbulence on intensity fluctuations of a Gaussian-Schell model beam in marine atmosphere
Mingjian Cheng(程明建), Lixin Guo(郭立新), Jiangting Li(李江挺). Chin. Phys. B, 2018, 27(5): 054203.
[12] Further analysis of scintillation index for a laser beam propagating through moderate-to-strong non-Kolmogorov turbulence based on generalized effective atmospheric spectral model
Jing Ma(马晶), Yu-Long Fu(付玉龙), Si-Yuan Yu(于思源), Xiao-Long Xie(谢小龙), Li-Ying Tan(谭立英). Chin. Phys. B, 2018, 27(3): 034201.
[13] Numerical study of heat-transfer in two-and quasi-two-dimensional Rayleigh-Bénard convection
Zhen-Yuan Gao(高振源), Jia-Hui Luo(罗嘉辉), Yun Bao(包芸). Chin. Phys. B, 2018, 27(10): 104702.
[14] Turbulence modulation model for gas-particle flow based on probability density function approach
Lu Wang(王路), Jiang-rong Xu(徐江荣). Chin. Phys. B, 2017, 26(8): 084702.
[15] Effect of atmospheric turbulence on entangled orbital angular momentum three-qubit state
Xiang Yan(闫香), Peng-Fei Zhang(张鹏飞), Jing-Hui Zhang(张京会), Xiao-Xing Feng(冯晓星), Chun-Hong Qiao(乔春红), Cheng-Yu Fan(范承玉). Chin. Phys. B, 2017, 26(6): 064202.
No Suggested Reading articles found!