Special Issue:
SPECIAL TOPIC — Unconventional superconductivity
|
TOPICAL REVIEW—Unconventional superconductivity |
Prev
Next
|
|
|
Superconductivity in octagraphene |
Jun Li(李军)1,2 and Dao-Xin Yao(姚道新)1,† |
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China; 2 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract This article reviews the basic theoretical aspects of octagraphene, an one-atom-thick allotrope of carbon, with unusual two-dimensional (2D) Fermi nesting, hoping to contribute to the new family of quantum materials. Octagraphene has an almost strongest sp2 hybrid bond similar to graphene, and has the similar electronic band structure as iron-based superconductors, which makes it possible to realize high-temperature superconductivity. We have compared various possible mechanisms of superconductivity, including the unconventional s± superconductivity driven by spin fluctuation and conventional superconductivity based on electron-phonon coupling. Theoretical studies have shown that octagraphene has relatively high structural stability. Although many 2D carbon materials with C4 carbon ring and C8 carbon ring structures have been reported, it is still challenging to realize the octagraphene with pure square-octagon structure experimentally. This material holds hope to realize new 2D high-temperature superconductivity.
|
Received: 17 September 2021
Revised: 02 December 2021
Accepted manuscript online: 08 December 2021
|
PACS:
|
74.20.-z
|
(Theories and models of superconducting state)
|
|
74.20.Pq
|
(Electronic structure calculations)
|
|
74.70.Kn
|
(Organic superconductors)
|
|
02.60.-x
|
(Numerical approximation and analysis)
|
|
Fund: This project is supported by the National Key R&D Program of China (Grant Nos. 2017YFA0206203 and 2018YFA0306001), the National Natural Science Foundation of China (Grant No. 11974432), GBABRF-2019A1515011337, Natural Science Foundation of Hebei Province, China (Grant No. A2021203010), Shenzhen Institute for Quantum Science and Engineering (Grant No. SIQSE202102), and Leading Talent Program of Guangdong Special Projects. |
Corresponding Authors:
Dao-Xin Yao
E-mail: yaodaox@mail.sysu.edu.cn
|
Cite this article:
Jun Li(李军) and Dao-Xin Yao(姚道新) Superconductivity in octagraphene 2022 Chin. Phys. B 31 017403
|
[1] Calandra M, Profeta G and Mauri F 2012 Physica Status Solidi (b) 249 2544 [2] Pešić J, Gajić R, Hingerl K and Belić M 2014 Europhys. Lett. 108 67005 [3] Kaloni T P, Balatsky A V and Schwingenschlögl U 2013 Europhys. Lett. 104 47013 [4] Mazin I and Balatsky A 2010 Philosophical Magazine Letters 90 731 [5] Si C, Liu Z, Duan W and Liu F 2013 Phys. Rev. Lett. 111 196802 [6] Zhang D Bo, Han Q and Wang Z D 2013 Chin. Phys. Lett. 30 057401 [7] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [8] Zhang M, Zhang Y, Lu C, Chen W Q and Yang F 2020 Chin. Phy. B 29 127102 [9] Chu Y, Zhu F, Wen L, Chen W, Chen Q and Ma T 2020 Chin. Phy. B 29 117401 [10] Liu Z, Li Y and Yang Y F 2019 Chin. Phy. B 28 077103 [11] Enyashin A N and Ivanovskii A L 2011 Physica Status Solidi (b) 248 1879 [12] Malko D, Neiss C, Viñes F and Görling A 2012 Phys. Rev. Lett. 108 086804 [13] Morshedloo T, Roknabadi M R, Behdani M, Modarresi M and Kazempour A 2016 Computational Materials Science 124 183 [14] Xu F and Zhang L 2019 Chin. Phy. B 28 117403 [15] Kang Y T, Lu C, Yang F and Yao D X 2019 Phys. Rev. B 99 184506 [16] Li J, Jin S, Yang F and Yao D X 2020 Phys. Rev. B 102 174509 [17] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473 [18] Liu Y, Wang G, Huang Q, Guo L and Chen X 2012 Phys. Rev. Lett. 108 225505 [19] Stewart G R 2011 Rev. Mod. Phys. 83 1589 [20] Yamashita M, Senshu Y, Shibauchi T, Kasahara S, Hashimoto K, Watanabe D, Ikeda H, Terashima T, Vekhter I, Vorontsov A B and Matsuda Y 2011 Phys. Rev. B 84 060507 [21] Li J S, Li Z B and Yao D X 2012 Chin. Phy. B 21 017302 [22] Sheng X L, Cui H J, Ye F, Yan Q B, Zheng Q R and Su G 2012 J. Appl. Phys. 112 074315 [23] Qinyan Gu Dingyu Xing J S 2019 Chin. Phys. Lett. 36 097401 [24] Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X and Zhong D 2017 Nat. Commun. 8 14924 [25] Zhu H, Balaban A T, Klein D J and Zivkovic T P 1994 J. Chem. Phys. 101 5281 [26] Lima F C d, Ferreira G J and Miwa R H 2019 Phys. Chem. Chem. Phys. 21 22344 [27] Liu Z 2014 Nanotechnology 25 075703 [28] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y and Hwang H Y 2019 Nature 572 624 [29] Deacon R S, Chuang K C, Nicholas R J, Novoselov K S and Geim A K 2007 Phys. Rev. B 76 081406 [30] Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969 [31] Jiang Q, Kang Y T and Yao D X 2013 Chin. Phy. B 22 087402 [32] Li D, Jiang L, Zhu M and Zheng Y 2020 Solid State Commun. 322 114064 [33] Andrew R C, Mapasha R E, Ukpong A M and Chetty N 2012 Phys. Rev. B 85 125428 [34] Sheng X L, Yan Q B, Ye F, Zheng Q R and Su G 2011 Phys. Rev. Lett. 106 155703 [35] Xu K, Liu H, Shi Y C, You J Y, Ma X Y, Cui H J, Yan Q B, Chen G C and Su G 2020 Carbon 157 270 [36] Haley M M 2008 Pure and Applied Chemistry 80 519 [37] Li G, Li Y, Liu H, Guo Y, Li Y and Zhu D 2010 Chemical Communications 46 3256 [38] Malko D, Neiss C, Viñes F and Görling A 2012 Phys. Rev. Lett. 108 086804 [39] Kehoe J M, Kiley J H, English J J, Johnson C A, Petersen R C and Haley M M 2000 Organic Letters 2 969 [40] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610 [41] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401 [42] Ye X J, Liu C S, Zhong W, Zeng Z and Du Y W 2014 J. Appl. Phys. 116 114304 [43] He C and Wang W 2020 Nanomaterials 10 2252 [44] Podlivaev A I and Openov L A 2013 Physics of the Solid State 55 2592 [45] Fthenakis Z G and Lathiotakis N N 2015 Phys. Chem. Chem. Phys. 17 16418 [46] Shang M, ling Li P, hua Wang Y and wei Luo J 2021 Chin. Phy. B 30 80703 [47] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385 [48] Majidi R 2017 Theoretical Chemistry Accounts 136 109 [49] Bao A, Tao H S, Liu H D, Zhang X and Liu W M 2014 Scientific Reports 4 6918 [50] Reich S, Maultzsch J, Thomsen C and Ordejón P 2002 Phys. Rev. B 66 035412 [51] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [52] Ijas M and Harju A 2010 Phys. Rev. B 82 235111 [53] Parr R G, Craig D P and Ross I G 1950 J. Chem. Phys. 18 1561 [54] Schüler M, Rösner M, Wehling T O, Lichtenstein A I and Katsnelson ¨ M I 2013 Phys. Rev. Lett. 111 036601 [55] Shibayama Y, Sato H, Enoki T and Endo M 2000 Phys. Rev. Lett. 84 1744 [56] López-Sancho M P, de Juan F and Vozmediano M A H 2009 Phys. Rev. B 79 075413 [57] Vardeny Z and Tauc J 1985 Phys. Rev. Lett. 54 1844 [58] Baeriswyl D, Campbell D K and Mazumdar S 1986 Phys. Rev. Lett. 56 1509 [59] Wehling T O, Sasiolu E, Friedrich C, Lichtenstein A I, Katsnelson M I and Blügel S 2011 Phys. Rev. Lett. 106 236805 [60] Kargarian M and Fiete G A 2010 Phys. Rev. B 82 085106 [61] Bao A, Zhang X F and Zhang X Z 2015 Chin. Phy. B 24 050310 [62] Sil A and Ghosh A K 2019 J. Phys.: Condens. Matter 31 245601 [63] Pomata N and Wei T C 2020 Phys. Rev. Lett. 124 177203 [64] Jacobsen J L 1999 J. Phys. A: Math. Gen. 32 5445 [65] Bhakta P and Randall D 2017 Theoretical Computer Science 699 21 [66] Zhang Y, Lee J, Wang W L and Yao D X 2015 Computational Materials Science 110 109 [67] Lin W, Liang S D, He C, Xie W, He H, Mai Q, Li J and Yao D X 2019 Scientific Reports 9 1025 [68] Ersan F, Kecik D, Ozcelik V O, Kadioglu Y, Akturk O U, Durgun E, Akturk E and Ciraci S 2019 Appl. Phys. Rev. 6 021308 [69] He M R, Yu R and Zhu J 2012 Angewandte Chemie 124 7864 [70] Ye F, Chi S, Bao W, Wang X F, Ying J J, Chen X H, Wang H D, Dong C H and Fang M 2011 Phys. Rev. Lett. 107 137003 [71] Troyer M, Kontani H and Ueda K 1996 Phys. Rev. Lett. 76 3822 [72] Li X, Zhang S and Wang Q 2017 Nanoscale 9 562 [73] Gurbuz E, Cahangirov S, Durgun E and Ciraci S 2017 Phys. Rev. B 96 205427 [74] Graser S, Kemper A F, Maier T A, Cheng H P, Hirschfeld P J and Scalapino D J 2010 Phys. Rev. B 81 214503 [75] Kubo K 2007 Phys. Rev. B 75 224509 [76] Luo Q, Martins G, Yao D X, Daghofer M, Yu R, Moreo A and Dagotto E 2010 Phys. Rev. B 82 104508 [77] Ma T, Yang F, Yao H and Lin H Q 2014 Phys. Rev. B 90 245114 [78] Wu X, Yang F, Le C, Fan H and Hu J 2015 Phys. Rev. B 92 104511 [79] Zhang L D, Yang F and Yao Y 2015 Scientific Reports 5 8203 [80] Kontani H and Ueda K 1998 Phys. Rev. Lett. 80 5619 [81] Kuroki K, Kimura T, Arita R, Tanaka Y and Matsuda Y 2002 Phys. Rev. B 65 100516 [82] Yamada K, Lee C H, Kurahashi K, Wada J, Wakimoto S, Ueki S, Kimura H, Endoh Y, Hosoya S, Shirane G, Birgeneau R J, Greven M, Kastner M A and Kim Y J 1998 Phys. Rev. B 57 6165 [83] Maier T A, Graser S, Hirschfeld P J and Scalapino D J 2011 Phys. Rev. B 83 100515 [84] Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003 [85] Graser S, Maier T A, Hirschfeld P J and Scalapino D J 2009 New J. Phys. 11 025016 [86] Wu H Q, He R Q, Meng Z Y and Lu Z Y 2015 Phys. Rev. B 91 125128 [87] Liu F, Liu C C, Wu K, Yang F and Yao Y 2013 Phys. Rev. Lett. 111 066804 [88] Khatami E, Singh R R, Pickett W E and Scalettar R T 2014 Phys. Rev. Lett. 113 106402 [89] Chatterjee U, Shi M, Ai D, Zhao J, Kanigel A, Rosenkranz S, Raffy H, Li Z Z, Kadowaki K, Hinks D G, Xu Z J, Wen J S, Gu G, Lin C T, Claus H, Norman M R, Randeria M and Campuzano J C 2010 Nat. Phys. 6 99 [90] Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H and Zhang Y 2019 Nature 575 156 [91] Yang F, Zhai H, Wang F and Lee D H 2011 Phys. Rev. B 83 134502 [92] Umrigar C J, Wilson K G and Wilkins J W 1988 Phys. Rev. Lett. 60 1719 [93] Ceperley D, Chester G V and Kalos M H 1977 Phys. Rev. B 16 3081 [94] Kotliar G and Liu J 1988 Phys. Rev. B 38 5142 [95] Kopp T, Seco F J, Schiller S and Wolfle P 1988 Phys. Rev. B 38 11835 [96] Meyer R and Entel P 1993 Phys. Rev. B 47 1099 [97] Bul/ka B R and Robaszkiewicz S 1996 Phys. Rev. B 54 13138 [98] Ribeiro T C and Wen X G 2008 Phys. Rev. B 77 144526 [99] Bünemann J 2011 Physica Status Solidi (b) 248 203 [100] Klett M, Ok S, Riegler D, Wolfle P, Thomale R and Neupert T 2020 Phys. Rev. B 101 161112 [101] Riegler D, Klett M, Neupert T, Thomale R and Wölfle P 2020 Phys. Rev. B 101 235137 [102] White S R 1996 Phys. Rev. Lett. 77 3633 [103] Sachdev S and Read N 1996 Phys. Rev. Lett. 77 4800 [104] Weihong Z, Gelfand M P, Singh R R P, Oitmaa J and Hamer C J 1997 Phys. Rev. B 55 11377 [105] Bose I and Ghosh A 1997 Phys. Rev. B 56 3149 [106] Manuel L O, Micheletti M I, Trumper A E and Ceccatto H A 1998 Phys. Rev. B 58 8490 [107] Farnell D J J, Schulenburg J, Richter J and Gernoth K A 2005 Phys. Rev. B 72 172408 [108] Ng K K 2010 Phys. Rev. B 81 094426 [109] Yamashita Y, Tomura M, Yanagi Y and Ueda K 2013 Phys. Rev. B 88 195104 [110] Yanagi Y and Ueda K 2014 Phys. Rev. B 90 085113 [111] Yamada A 2014 Phys. Rev. B 90 245139 [112] Iglovikov V I, Khatami E and Scalettar R T 2015 Phys. Rev. B 92 045110 [113] Zhang L and Wang F 2017 Phys. Rev. Lett. 118 087201 [114] Liu Y J, Chen Y C, Yang M F and Gong C D 2006 J. Phys.: Condens. Matter 18 1805 [115] Bao W, Huang Q Z, Chen G F, Wang D M, He J B and Qiu Y M 2011 Chin. Phys. Lett. 28 086104 [116] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 [117] Ma Y M 2019 Chin. Phys. Lett. 36 90101 [118] Pal B 2018 Phys. Rev. B 98 245116 [119] Nunes L H C M and Smith C M 2020 Phys. Rev. B 101 224514 [120] Ye J, Li J and Yao D X, In preparation [121] Sergeyev D M, Myasnikova L N and Shunkeyev K S 2020 Russian Physics Journal 63 303 [122] Kochaev A I, Meftakhutdinov R M, Sibatov R T and Timkaeva D A 2021 Computational Materials Science 186 109999 [123] Li F, Lu J, Zhu H and Lin X 2018 Results in Physics 9 656 [124] Huang H, Li Y, Liu Z, Wu J and Duan W 2013 Phys. Rev. Lett. 110 029603 [125] Kim B G, Jo J Y and Sim H S 2013 Phys. Rev. Lett. 110 029601 [126] Zhang L Z, Wang Z F, Wang Z M, Du S X, Gao H J and Liu F 2015 The Journal of Physical Chemistry Letters 6 2959 [127] Liu Y, Zou X and Yakobson B I 2012 ACS Nano 6 7053 [128] Cretu O, Lin Y C and Suenaga K 2014 Nano Lett. 14 1064 [129] Li Q, Zou X, Liu M, Sun J, Gao Y, Qi Y, Zhou X, Yakobson B I, Zhang Y and Liu Z 2015 Nano Lett. 15 5804 [130] Jiao H, Schleyer P v R, Mo Y, McAllister M A and Tidwell T T 1997 J. Am. Chem. Soc. 119 7075 [131] Slayden S W and Liebman J F 2001 Chemical Reviews 101 1541 [132] Lahiri J, Lin Y, Bozkurt P, Oleynik I I and Batzill M 2010 Nat. Nanotech. 5 326 [133] Kotakoski J, Krasheninnikov A V, Kaiser U and Meyer J C C 2011 Phys. Rev. Lett. 106 105505 [134] Cai XH, Yang Q, Zheng S and Wang M 2021 Energy Environ. Mater. 4 458 [135] Fan Q, Martin-Jimenez D, Ebeling D, Krug C K, Brechmann L, Kohlmeyer C, Hilt G, Hieringer W, Schirmeisen A and Gottfried J M 2019 J. Am. Chem. Soc. 141 17713 [136] Zhang R, Xia B, Xu H and Lin N 2019 ChemPhysChem 20 2292 [137] Fan Q, Yan L, Tripp M W, Krejčí O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P and Gottfried J M 2021 Science 372 852 [138] Hudspeth M A, Whitman B W, Barone V and Peralta J E 2010 ACS Nano 4 4565 [139] Karaush N N, Baryshnikov G V and Minaev B F 2014 Chem. Phys. Lett. 612 229 [140] Ma Y B, Ouyang T, Chen Y P and Xie Y E 2021 Chin. Phy. B 30 77103 [141] Crespi V H, Benedict L X, Cohen M L and Louie S G 1996 Phys. Rev. B 53 R13303 [142] Zhang Z, Xun Z, Wu L, Chen Y, Xia H, Hao D and Tang G 2017 Euro. Phys. J. B 90 89 [143] Li Z W, Sun Y W, Wang Y H, Zhu Y L, Lu Z Y and Sun Z Y 2020 Nanoscale 12 4544 [144] Hu J, Liu Y, Liu N, Li J and Ouyang C 2020 Phys. Chem. Chem. Phys. 22 3281 [145] Zhang X, Jin L, Dai X, Chen G and Liu G 2020 Appl. Surf. Sci. 527 146849 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|