Special Issue:
SPECIAL TOPIC — Superconductivity in vanadium-based kagome materials
|
SPECIAL TOPIC—Superconductivity in vanadium-based kagome materials |
Prev
Next
|
|
|
Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5 |
Fang-Hang Yu(喻芳航)1, Xi-Kai Wen(温茜凯)1, Zhi-Gang Gui(桂智刚)1, Tao Wu(吴涛)1, Zhenyu Wang(王震宇)1, Zi-Ji Xiang(项子霁)1, Jianjun Ying(应剑俊)1,†, and Xianhui Chen(陈仙辉)1,2,3,‡ |
1 Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei 230026, China; 3 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China |
|
|
Abstract Controlling the anomalous Hall effect (AHE) inspires potential applications of quantum materials in the next generation of electronics. The recently discovered quasi-2D kagome superconductor CsV3Sb5 exhibits large AHE accompanying with the charge-density-wave (CDW) order which provides us an ideal platform to study the interplay among nontrivial band topology, CDW, and unconventional superconductivity. Here, we systematically investigated the pressure effect of the AHE in CsV3Sb5. Our high-pressure transport measurements confirm the concurrence of AHE and CDW in the compressed CsV3Sb5. Remarkably, distinct from the negative AHE at ambient pressure, a positive anomalous Hall resistivity sets in below 35 K with pressure around 0.75 GPa, which can be attributed to the Fermi surface reconstruction and/or Fermi energy shift in the new CDW phase under pressure. Our work indicates that the anomalous Hall effect in CsV3Sb5 is tunable and highly related to the band structure.
|
Received: 18 October 2021
Revised: 11 November 2021
Accepted manuscript online: 15 November 2021
|
PACS:
|
74.62.Fj
|
(Effects of pressure)
|
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
Fund: This work was supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0704900 and 2017YFA0303001), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY160000), the Science Challenge Project of China (Grant No. TZ2016004), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) (Grant No. QYZDYSSWSLH021), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000), the National Natural Science Foundation of China (Grants Nos. 11888101 and 11534010), the Collaborative Innovation Program of Hefei Science Center, CAS (Grant No. 2020HSC-CIP014), and the Fundamental Research Funds for the Central Universities, China (Grant No. WK3510000011). |
Corresponding Authors:
Jianjun Ying, Xianhui Chen
E-mail: yingjj@ustc.edu.cn;chenxh@ustc.edu.cn
|
Cite this article:
Fang-Hang Yu(喻芳航), Xi-Kai Wen(温茜凯), Zhi-Gang Gui(桂智刚), Tao Wu(吴涛), Zhenyu Wang(王震宇), Zi-Ji Xiang(项子霁), Jianjun Ying(应剑俊), and Xianhui Chen(陈仙辉) Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5 2022 Chin. Phys. B 31 017405
|
[1] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [2] Smit J 1958 Physica 24 39 [3] Berger L 1970 Phys. Rev. B 2 4559 [4] Nagaosa N 2006 J. Phys. Soc. Jpn. 75 042001 [5] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [6] Haldane F D M 2004 Phys. Rev. Lett. 93 206602 [7] Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N and Tokura Y 2001 Science 291 2573 [8] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C and Lei H C 2018 Nat. Commun. 9 3681 [9] Liang T, Lin J J, Gibson Q, Kushwaha S, Liu M H, Wang W D, Xiong H Y, Sobota J A, Hashimoto M, Kirchmann P S, Shen Z X, Cava R J and Ong N P 2018 Nat. Phys. 14 451 [10] Suzuki T, Chisnell R, Devarakonda A, Liu Y T, Feng W, Xiao D, Lynn J W and Checkelsky J G 2016 Nat. Phys. 12 1119 [11] Smit J 1955 Physica 21 877 [12] Miyasato T, Abe N, Fujii T, Asamitsu A, Onoda S, Onose Y, Nagaosa N and Tokura Y 2007 Phys. Rev. Lett. 99 086602 [13] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407 [14] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [15] Ni S L, Ma S, Zhang Y H, Yuan J, Yang H T, Lu Z Y W, Wang N N, Sun J P, Zhao Z, Li D, Liu S B, Zhang H, Chen H, Jin K, Cheng J G, Yu L, Zhou F, Dong X L, Hu J P, Gao H J and Zhao Z X 2021 Chin. Phys. Lett. 38 057403 [16] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801 [17] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403 [18] Yang S Y, Wang Y J, Ortiz B R, Liu D F, Gayles J, Derunova E, Gonzalez-Hernandez R, Smejkal L, Chen Y L, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003 [19] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103 [20] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater. 20 1353 [21] Feng X, Jiang K, Wang Z and Hu J 2021 Sci. Bull. 66 1384 [22] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645 [23] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001 [24] Zhang Z Y, Chen Z, Zhou Y, Yuan Y F, Wang S Y, Wang J, Yang H Y, An C, Zhang L L, Zhu X D, Zhou Y H, Chen X L, Zhou J H and Yang Z R 2021 Phys. Rev. B 103 224513 [25] Wang Q, Kong P, Shi W, Pei C, Wen C, Gao L, Zhao Y, Yin Q, Wu Y and Li G 2021 Adv. Mater. 33 2102813 [26] Chen X, Zhan X H, Wang X J, Deng J, Liu X B, Chen X, Guo J G and Chen X L 2021 Chin. Phys. Lett. 38 057402 [27] Zhao C C, Wang L S, Xia W, Yin Q W, Ni J M, Huang Y Y, Tu C P, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Yang X F and Y L S 2021 arXiv: 2102.08356 [28] Sun Z L, Peng K L, Cui J H, Zhu C S, Zhuo W Z, Wang Z Y and Chen X H 2021 Phys. Rev. B 103 085116 [29] Chen X, Wang M, Gu C, Wang S, Zhou Y, An C, Zhou Y, Zhang B, Chen C, Yuan Y, Qi M, Zhang L, Zhou H, Zhou J, Yao Y and Yang Z 2019 Phys. Rev. B 100 165145 [30] Liu Z Y, Zhang T, Xu S X, Yang P T, Wang Q, Lei H C, Sui Y, Uwatoko Y, Wang B S, Weng H M, Sun J P and Cheng J G 2020 Phys. Rev. Mater. 4 044203 [31] Wang X, Li Z, Zhang M, Hou T, Zhao J, Li L, Rahman A, Xu Z, Gong J, Chi Z, Dai R, Wang Z, Qiao Z and Zhang Z 2019 Phys. Rev. B 100 014407 [32] Reis R D d, Ghorbani Zavareh M, Ajeesh M O, Kutelak L O, Sukhanov A S, Singh S, Noky J, Sun Y, Fischer J E, Manna K, Felser C and Nicklas M 2020 Phys. Rev. Mater. 4 051401 [33] Singh C, Singh V, Pradhan G, Srihari V, Poswal H K, Nath R, Nandy A K and Nayak A K 2020 Phys. Rev. Res. 2 043366 [34] Lee M, Kang W, Onose Y, Tokura Y and Ong N P 2009 Phys. Rev. Lett. 102 186601 [35] Akiba K, Iwamoto K, Sato T, Araki S and Kobayashi T C 2020 Phys. Rev. Res. 2 043090 [36] Zheng G L, Chen Z, Tan C, Wang M Y, Zhu X D, Albarakati S, Algarni M, Partridge J, Farrar L, Zhou J H, Ning W, Tian M L, Fuhrer M S and Wang L 2021 arXiv: 2109.12588v1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|