Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 040701    DOI: 10.1088/1674-1056/ac29aa
GENERAL Prev   Next  

Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure

Caihong Jia(贾彩红)1,2, Min Cao(曹敏)1, Tingting Ji(冀婷婷)1, Dawei Jiang(蒋大伟)1, and Chunxiao Gao(高春晓)1,†
1 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130000, China;
2 College of Mathematics and Physics, Inner Mongolia University for Nationalities, Tongliao 028043, China
Abstract  Investigating the thermal transport properties of materials is of great importance in the field of earth science and for the development of materials under extremely high temperatures and pressures. However, it is an enormous challenge to characterize the thermal and physical properties of materials using the diamond anvil cell (DAC) platform. In the present study, a steady-state method is used with a DAC and a combination of thermocouple temperature measurement and numerical analysis is performed to calculate the thermal conductivity of the material. To this end, temperature distributions in the DAC under high pressure are analyzed. We propose a three-dimensional radiative-conductive coupled heat transfer model to simulate the temperature field in the main components of the DAC and calculate in situ thermal conductivity under high-temperature and high-pressure conditions. The proposed model is based on the finite volume method. The obtained results show that heat radiation has a great impact on the temperature field of the DAC, so that ignoring the radiation effect leads to large errors in calculating the heat transport properties of materials. Furthermore, the feasibility of studying the thermal conductivity of different materials is discussed through a numerical model combined with locally measured temperature in the DAC. This article is expected to become a reference for accurate measurement of in situ thermal conductivity in DACs at high-temperature and high-pressure conditions.
Keywords:  thermal conductivity      heat radiation effect      temperature field      diamond anvil cell  
Received:  06 July 2021      Revised:  27 August 2021      Accepted manuscript online:  24 September 2021
PACS:  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  47.11.Df (Finite volume methods)  
  51.20.+d (Viscosity, diffusion, and thermal conductivity)  
  61.80.-x (Physical radiation effects, radiation damage)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0702700) and the National Natural Science Foundation of China (Grant Nos. 11674404 and 11774126).
Corresponding Authors:  Chunxiao Gao     E-mail:

Cite this article: 

Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓) Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure 2022 Chin. Phys. B 31 040701

[1] Samudrala G K, Moore S L, Velisavljevic N, Georgiy M T, Paul A B and Yogesh K V 2016 AIP Adv. 6 095027
[2] Sakai T, Yagi T, Ohfuji H, Irifune T, Ohishi Y, Hirao N, Suzuki Y, Kuroda Y, Asakawa T and Kanemura T 2015 Rev. Sci. Instrum. 86 033905
[3] Natalia D, Leonid D, Razvan C and Michael H 2010 Appl. Phys. Lett. 97 251903
[4] Liu S, Tang Q Q, Wu B B, Zhang F, Liu J Y, Fan C M and Lei L 2021 Chin. Phys. B 30 016301
[5] Ji T T, Gao Y, Qin T R, Yue D H, Liu H, Han Y H and Gao C X 2021 J. Phys. Chem. C 125 3314
[6] Huang Y P, Haung X L, Wang X, Zhang W T, Zhou D, Zhou Q, Liu B B and Cui T 2019 Chin. Phys. B 28 096402
[7] Zhao L, Yue D H, Liu C L, Wang M, Han Y H and Gao C X 2019 Chin. Phys. B 28 030702
[8] Li Y Q, Gao Y, Han Y H, Liu C L, Peng G, Wang Q L, Ke F, Ma Y Z and Gao C X 2015 Appl. Phys. Lett. 107 142103
[9] Veksler I V and Hou T 2020 Contrib. Mineral. Petrol. 175 1
[10] Li W M, Zhao J F, Cao L P, Hu Z, Huang Q Z, Wang X C, Liu Y, Zhao G Q, Zhang J, Liu Q Q, Yu R Z, Long Y W, Wu H, Lin H J, Chen C T, Li Z, Gong Z Z, Guguchia Z, Kim J S, Stewart G R, Uemura Y J, Uchida S and Jin C. Q 2019 Proc. Natl. Acad. Sci. USA 116 12156
[11] Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A and Dias R P 2020 Nature 586 373
[12] Shen G and Mao H K 2017 Rep. Prog. Phys. 80 016101
[13] Hsieh W P, Zalden P, Wuttig M, Lindenberg A M and Mao W L 2013 Appl. Phys. Lett. 103 191908
[14] Keller R and Holzapfe W B 1977 Rev. Sci. Instrum. 48 517
[15] Stacey F D and Loper D E 2007 Phys. Earth Planet. Interiors 161 13
[16] Marton F C, Shankland T J and Rubie D C 2005 Phys. Earth Planet. Interiors 149 53
[17] Yue D H, Ji T T, Qin T R, Wang J, Liu C L, Jiao H, Zhao L, Han Y H, and Gao C X 2018 Appl. Phys. Lett. 112 081901
[18] Pangilinan G I, Ladouceur H D and Russell T P 2000 Rev. Sci. Instrum. 71 3846
[19] Shen G Y, Rivers M L, Wang Y B and Sutton S R 2001 Rev. Sci. Instrum. 72 1273
[20] Yagi T, Ohta K and Kobayashi K 2011 Meas. Sci. Technol. 22 024011
[21] Cahill D G, Chen B and Hsieh W P 2010 Phys. Rev. B 80 180302
[22] Rainey E S G, Hernlund J W and Kavner A 2013 J. Appl. Phys. 114 204905
[23] Beck P, Goncharov A F and Struzhkin V V 2007 Appl. Phys. Lett. 91 181914
[24] Paolo D, Alessandro N and Daniele C 1998 Appl. Opt. 37 5731
[25] Wang S, Ai Q, Zou T Q, Sun C and Xie M 2020 Appl. Therm. Eng. 177 115457
[26] Taniguchi H, Ohmori T and Iwata M 2002 Heat Transfer-Asian Research 31 391
[27] Powell R W, Tye R P and Woodman M J 1963 J. Less-Common Met. 5 49
[28] Yue D H, Gao Y, Zhao L, Yan Y L, Tingting Ji T T, Han Y H and Chunxiao Gao 2019 Jpn. J. Appl. Phys. 58 040906
[29] Nicolas M and Nicola M 2005 Phys. Rev. B 71 205214
[30] Zhang H, Li Y M and Tao W Q 2017 Appl. Therm. Eng. 114 337
[31] Olson J R, Pohl R O, Vandersande J W, Zoltan A, Anthony T R, and Banholzer W F 1993 Phys. Rev. B 47 14850
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[5] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[6] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[7] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[8] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[9] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[10] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[11] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[12] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[13] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[14] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[15] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
No Suggested Reading articles found!