Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024303    DOI: 10.1088/1674-1056/ac46c2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nearfield acoustic holography in a moving medium based on particle velocity input using nonsingular propagator

Bi-Chun Dong(董必春), Run-Mei Zhang(张润梅), Bin Yuan(袁彬), and Chuan-Yang Yu(俞传阳)
Department of Mechanical & Electrical Engineering School, Anhui Jianzhu University, Hefei 230601, China
Abstract  Nearfield acoustic holography in a moving medium is a technique which is typically suitable for sound sources identification in a flow. In the process of sound field reconstruction, sound pressure is usually used as the input, but it may contain considerable background noise due to the interactions between microphones and flow moving at a high velocity. To avoid this problem, particle velocity is an alternative input, which can be obtained by using laser Doppler velocimetry in a non-intrusive way. However, there is a singular problem in the conventional propagator relating the particle velocity to the pressure, and it could lead to significant errors or even false results. In view of this, in this paper, nonsingular propagators are deduced to realize accurate reconstruction in both cases that the hologram is parallel to and perpendicular to the flow direction. The advantages of the proposed method are analyzed, and simulations are conducted to verify the validation. The results show that the method can overcome the singular problem effectively, and the reconstruction errors are at a low level for different flow velocities, frequencies, and signal-to-noise ratios.
Keywords:  nearfield acoustic holography      moving medium      particle velocity      nonsingular propagator  
Received:  18 November 2021      Revised:  27 December 2021      Accepted manuscript online:  29 December 2021
PACS:  43.20.+g (General linear acoustics)  
  02.30.Zz (Inverse problems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804002), the University Science Research Project of Anhui Province, China (Grant Nos. KJ2019A0792 and KJ2019A0797), and the Anhui Jianzhu University Research Project (Grant No. 2018QD06).
Corresponding Authors:  Bi-Chun Dong     E-mail:  dongbchabc@163.com

Cite this article: 

Bi-Chun Dong(董必春), Run-Mei Zhang(张润梅), Bin Yuan(袁彬), and Chuan-Yang Yu(俞传阳) Nearfield acoustic holography in a moving medium based on particle velocity input using nonsingular propagator 2022 Chin. Phys. B 31 024303

[1] Williams E G, Maynard J D and Skudrzyk E 1980 J. Acoust. Soc. Am. 68 340
[2] Maynard J D, Williams E G and Lee Y 1985 J. Acoust. Soc. Am. 78 1395
[3] Bi C X, Chen X Z, Chen J and Zhou R 2005 Sci. China. Ser. E:Technol. Sci. 48 338
[4] Jacobsen F and Liu Y 2005 J. Acoust. Soc. Am. 118 3139
[5] Ruhala R J 1999 A Study of Tire/Pavement Interaction Noise Using Near-Field Acoustical Holography (Ph.D. Dissertation) (State College:The Pennsylvania State University)
[6] Ruhala R J and Swanson D C 2002 J. Acoust. Soc. Am. 112 420
[7] Kwon H S, Niu Y and Kim Y J 2010 J. Acoust. Soc. Am. 128 1823
[8] Kim Y J and Niu Y 2012 J. Sound Vib. 331 3945
[9] Dong B C, Bi C X, Zhang, X Z and Zhang Y B 2014 Appl. Acoust. 86 71
[10] Zhang X Z, Bi C X, Zhang Y B and Xu L 2015 J. Acoust. Soc. Am. 137 2678
[11] Dong B C, Bi C X, Zhang X Z and Zhang Y B 2017 J. Sound. Vib. 410 364
[12] Parisot-Dupuis H, Simon F and Piot E 2011 Proceedings of 40th International Congress and Exposition on Noise Control Engineering (Inter-Noise 2011), September 4-7, 2011, Osaka, Japan, p. 1749
[13] Parisot-Dupuis H, Simon F, Piot E and Micheli F 2013 J. Acoust. Soc. Am. 133 4087
[14] Bi C X, Dong B C, Zhang X Z and Zhang Y B 2017 J. Vib. Acoust. 139 051017
[15] Wilcox D J and Gibson I S 1984 Int. J. Numer. Meth. Eng. 20 1507
[1] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[2] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[3] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[4] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
[5] An improved lumped parameter model predicting attenuation of earmuff with air leakage
Xu Zhong(仲旭), Zhe Chen(陈哲), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(11): 114301.
[6] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[7] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[8] Synthetical optimization of the structure dimension for the thermoacoustic regenerator
Huifang Kang(康慧芳), Lingxiao Zhang(张凌霄), Jun Shen(沈俊),Xiachen Ding(丁夏琛), Zhenxing Li(李振兴), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(3): 034301.
[9] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
[10] Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments
Lin Liu(刘琳), Xiu-Mei Zhang(张秀梅), and Xiu-Ming Wang(王秀明). Chin. Phys. B, 2021, 30(2): 024301.
[11] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[12] Shear-horizontal transverse-electric seismoelectric waves in cylindrical double layer porous media
Wei-Hao Wang(王伟豪), Xiao-Yan Zhu(朱晓焱), Jin-Xia Liu(刘金霞), and Zhi-Wen Cui(崔志文). Chin. Phys. B, 2021, 30(1): 014301.
[13] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[14] Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2020, 29(3): 034304.
[15] Micro-crack detection of nonlinear Lamb wave propagation in three-dimensional plates with mixed-frequency excitation
Wei-Guang Zhu(祝伟光), Yi-Feng Li(李义丰), Li-Qiang Guan(关立强), Xi-Li Wan(万夕里), Hui-Yang Yu(余辉洋), Xiao-Zhou Liu(刘晓宙). Chin. Phys. B, 2020, 29(1): 014302.
No Suggested Reading articles found!