ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation |
He Wang(王贺)1, Fang-Bao Tian(田方宝)2, and Xiang-Dong Liu(刘向东)1,3,† |
1 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China; 2 School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia; 3 College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China |
|
|
Abstract A phase-field-based lattice Boltzmann model is proposed for the interface capturing of multi-phase flows based on the conservative Allen-Cahn equation (ACE). By adopting the improved form of a relaxation matrix and an equilibrium distribution function, the time derivative ∂t(φu) induced by recovering the diffusion term in ACE is eliminated. The conducted Chapman-Enskog analysis demonstrates that the correct conservative ACE is recovered. Four benchmark cases including Zalesak's disk rotation, vortex droplet, droplet impact on thin film, and Rayleigh-Taylor instability are investigated to validate the proposed model. The numerical results indicate that the proposed model can accurately describe the complex interface deformation.
|
Received: 26 April 2021
Revised: 28 June 2021
Accepted manuscript online: 07 July 2021
|
PACS:
|
47.11.-j
|
(Computational methods in fluid dynamics)
|
|
47.61.Jd
|
(Multiphase flows)
|
|
47.11.Qr
|
(Lattice gas)
|
|
Corresponding Authors:
Xiang-Dong Liu
E-mail: liuxd@yzu.edu.cn
|
Cite this article:
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东) Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation 2022 Chin. Phys. B 31 024701
|
[1] Dbouk T and Drikakis D 2020 Phys. Fluids 32 053310 [2] Gao W and Chen Y 2019 Int. J. Heat Mass Tran. 135 158 [3] Gerritsen M G and Durlofsky L J 2005 Annu. Rev. Fluid Mech. 37 211 [4] Wu L Y, Liu L B, Han X T, Li Q W and Yang W B 2019 Chin. Phys. B 28 104702 [5] Gao W, Yu C and Yao F 2020 Chin. Phys. B 29 054702 [6] Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C and Chang Y H 2017 Acta Phys. Sin. 66 024702 (in Chinese) [7] Zhao K, She Y Z, Jiang Y L, Qin J and Zhang Z H 2019 Acta Phys. Sin. 68 244401 (in Chinese) [8] Liu H, Zhang Y and Valocchi A J 2015 Phys. Fluids 27 052103 [9] Ma J, Wang Z, Young J, Lai J C S, Sui Y and Tian F B 2020 J. Comput. Phys. 415 109487 [10] Xu L, Tian F B, Young J and Lai J C S 2018 J. Comput. Phys. 375 22 [11] Zhang Z D, Cao Y T, Sun D K, Xing H, Wang J C and Ni Z H 2020 Chin. Phys. B 29 028103 [12] Gunstensen A K, Rothman D H, Zaleski S and Zanetti G 1991 Phys. Rev. A 43 4320 [13] Liu H, Valocchi A J and Kang Q 2012 Phys. Rev. E 85 069901 [14] Wen Z X, Li Q, Yu Y and Luo K H 2019 Phys. Rev. E 100 023301 [15] Inamuro T, Konishi N and Ogino F 2000 Comput. Phys. Commun. 129 32 [16] Pooley C M and Furtado K 2008 Phys. Rev. E 77 046702 [17] Swift M R, Orlandini E, Osborn W R and Yeomans J M 1996 Phys. Rev. E 54 5041 [18] Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301 [19] Shan X W and Chen H D 1993 Phys. Rev. E 47 1815 [20] Zhang Q Y, Sun D K and Zhu M F 2017 Chin. Phys. B 26 084701 [21] Fakhari A and Rahimian M H 2010 Phys. Rev. E 81 036707 [22] Geier M, Fakhari A and Lee T 2015 Phys. Rev. E 91 063309 [23] He X Y, Chen S Y and Zhang R Y 1999 J. Comput. Phys. 152 642 [24] Lee T and Lin C L 2005 J. Comput. Phys. 206 16 [25] Liang H, Shi B C, Guo Z L and Chai Z H 2014 Phys. Rev. E 89 053320 [26] Ren F, Song B, Sukop M C and Hu H 2016 Phys. Rev. E 94 023311 [27] Zheng H W, Shu C and Chew Y T 2005 Phys. Rev. E 72 056705 [28] Zheng H W, Shu C and Chew Y T 2006 J. Comput. Phys. 218 353 [29] Zu Y Q and He S 2013 Phys. Rev. E 87 043301 [30] Huang H, Huang J J, Lu X Y and Sukop M C 2013 Int. J. Mod. Phys. C 24 1350021 [31] Chai Z, Sun D, Wang H and Shi B 2018 Int. J. Heat Mass Transfer 122 631 [32] Wang H L, Chai Z H, Shi B C and Liang H 2016 Phys. Rev. E 94 033304 [33] Liang H, Xu J, Chen J, Wang H, Chai Z and Shi B 2018 Phys. Rev. E 97 033309 [34] Marié S, Ricot D and Sagaut P 2009 J. Comput. Phys. 228 1056 [35] Xu H, Malaspinas O and Sagaut P 2012 J. Comput. Phys. 231 7335 [36] Xu H and Sagaut P 2011 J. Comput. Phys. 230 5353 [37] Chiu P H and Lin Y T 2011 J. Comput. Phys. 230 185 [38] Huang R and Wu H 2014 J. Comput. Phys. 274 50 [39] Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159 [40] Coppola G, Rocco G and de Luca L 2011 Phys. Fluids 23 022105 [41] Josserand C and Zaleski S 2003 Phys. Fluids 15 1650 [42] Rioboo R, Tropea C and Marengo M 2001 Atomizat. Sprays 11 155 [43] Ramaprabhu P, Dimonte G, Young Y N, Calder A C and Fryxell B 2006 Phys. Rev. E 74 066308 [44] Goncharov V N 2002 Phys. Rev. Lett. 88 134502 [45] Waddell J T, Niederhaus C E and Jacobs J W 2001 Phys. Fluids 13 1263 [46] Ding H, Spelt P D M and Shu C 2007 J. Comput. Phys. 226 2078 [47] Shao J Y and Shu C 2015 Int. J. Numer. Methods Fluids 77 526 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|