ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Propagation dynamics of dipole breathing wave in lossy nonlocal nonlinear media |
Jian-Li Guo(郭建丽), Zhen-Jun Yang(杨振军)†, Xing-Liang Li(李星亮), and Shu-Min Zhang(张书敏) |
College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, China |
|
|
Abstract In the framework of nonlinear wave optics, we report the evolution process of a dipole breathing wave in lossy nonlocal nonlinear media based on the nonlocal nonlinear Schrödinger equation. The analytical expression of the dipole breathing wave in such a nonlinear system is obtained by using the variational method. Taking advantage of the analytical expression, we analyze the influences of various physical parameters on the breathing wave propagation, including the propagation loss and the input power on the beam width, the beam intensity, and the wavefront curvature. Also, the corresponding analytical solutions are obtained. The validity of the analysis results is verified by numerical simulation. This study provides some new insights for investigating beam propagation in lossy nonlinear media.
|
Received: 08 April 2021
Accepted manuscript online: 20 May 2021
|
PACS:
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.65.Jx
|
(Beam trapping, self-focusing and defocusing; self-phase modulation)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12074098), the Natural Science Foundation of Hebei Province of China (Grant Nos. A2020205009 and F2020205016), the Science and Technology Project of Hebei Education Department, China (Grant No. ZD2018081), the Chunhui Plan of Ministry of Education of China (Grant No. Z2017020), and the Science Foundation for Distinguished Young Scholars of Hebei Normal University of China (Grant No. L2017J02). |
Corresponding Authors:
Zhen-Jun Yang
E-mail: zjyang@vip.163.com
|
Cite this article:
Jian-Li Guo(郭建丽), Zhen-Jun Yang(杨振军), Xing-Liang Li(李星亮), and Shu-Min Zhang(张书敏) Propagation dynamics of dipole breathing wave in lossy nonlocal nonlinear media 2022 Chin. Phys. B 31 014203
|
[1] Assanto G 2013 Nematicons—Spatial Optical Solitons in Nematic Liquid Crystals (New Jersey: John Wiley Sons) [2] Snyder A W and Mitchell D J 1997 Science 276 1538 [3] Królikowski W and Bang O 2000 Phys. Rev. E 63 016610 [4] Alberucci A, Kravets N, Piccardi A, Buchnev O, Kaczmarek M and Assanto G 2014 Opt. Express 22 30663 [5] Assanto G, Khan C, Piccardi A and Smyth N F 2019 Phys. Rev. E 100 062702 [6] Misra A P and Shukla P K 2012 Phys. Rev. E 85 1489 [7] Ye F, Kartashov Y V and Torner L 2008 Phys. Rev. A 77 033829 [8] Rotschild C, Cohen O, Manela O, Segev M and Carmon T 2005 Phys. Rev. Lett. 95 213904 [9] Guo Q, Luo B, Yi B, Chi S and Xie Y 2004 Phys. Rev. E 69 016602 [10] Alberucci A, Jisha C P and Assanto G 2014 Opt. Lett. 39 4317 [11] Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105 [12] Aslan E C, Tchier F and Inc M 2017 Superlattice Microst. 105 48 [13] Wu H Y and Jiang L H 2019 Nonlinear Dyn. 97 403 [14] Cheng S, Wang Q, Ge L J, Shi J L, Ding H X and Shen M 2011 Chin. Phys. B 20 054206 [15] Chen M N, Zeng S H, Lu D Q, Hu W and Guo Q 2018 Phys. Rev. E 98 022211 [16] Liang G, Cheng W, Dai Z, Jia T, Wang M and Li H 2017 Opt. Express 25 11717 [17] Gentilini S, Ghajeri F, Ghofraniha N, Falco A D and Conti C 2014 Opt. Express 22 1667 [18] Leonetti M, Karbasi S, Mafi A and Conti C 2014 Phys. Rev. Lett. 112 193902 [19] Klaers J, Schmitt J, Vewinger F and Weitz M 2010 Nature 468 545 [20] Alberucci A, Jisha C P, Smyth N F and Assanto G 2015 Phys. Rev. A 91 013841 [21] Gao X H, Wang J, Zhou L, Yang Z J, Ma X, Lu D, Guo Q and Hu W 2014 Opt. Lett. 39 3760 [22] Rotschild C, Segev M, Xu Z, Kartashov Y V, Torner L and Cohen O 2006 Opt. Lett. 31 3312 [23] Hu W, Zhang T, Guo Q, Xuan L and Lan S 2006 Appl. Phys. Lett. 89 071111 [24] Ma X K, Yang Z J, Lu D Q and Hu W 2011 Phys. Rev. A 84 033802 [25] Yang Z, Ma X, Lu D, Zheng Y, Gao X and Hu W 2011 Opt. Express 19 4890 [26] Alberucci A, Jisha C P and Assanto G 2016 J. Opt. 18 125501 [27] Chen M N, Guo Q, Lu D Q and Hu W 2019 Commun. Nonlinear Sci. 71 73 [28] Gao M M and Shen M 2020 J. Opt. 22 025502 [29] Gao Z J and Lin J 2018 Opt. Commun. 426 302 [30] Ding S T and Gao X M 2020 Appl. Optics 59 3673 [31] Yang Z J, Yang Z F, Li J X, Dai Z P, Zhang S M and Li X L 2017 Results Phys. 7 1485 [32] Yang Z J, Dai Z P, Zhang S M and Pang Z G 2015 Nonlinear Dyn. 80 1081 [33] Yang Z J, Zhang S M, Li X L, Pang Z G and Bu H X 2018 Nonlinear Dyn. 94 2563 [34] Yang Z J, Zhang S M, Li X L and Pang Z G 2018 Appl. Math. Lett. 82 64 [35] Yang Z J, Lu D Q, Hu W, Zheng Y Z and Gao X H 2010 Chin. Phys. B 19 124212 [36] Song L, Yang Z, Li X and Zhang S 2018 Opt. Express 26 19182 [37] Song L, Yang Z, Zhang S and Li X 2019 Opt. Express 27 26331 [38] Song L, Yang Z, Zhang S and Li X 2019 Phys. Rev. A 99 063817 [39] Kwasny M, Karpierz M A, Assanto G and LaudynKwasny U 2020 Opt. Lett. 45 2451 [40] PS Jung P S, Izdebskaya Y V, Shvedov V G, Christodoulides D N and Krolikowski W 2021 Opt. Lett. 46 62 [41] Reyna A S, Baltar H, Bergmann E, Amaral A M and Araújo C B D 2020 Phys. Rev. A 102 033523 [42] Nikolov N I, Neshev D, Bang O and Krolikowski W Z 2003 Phys. Rev. E 68 036614 [43] Zeng S, Chen M, Zhang T, Hu W, Guo Q and Lu D 2018 Phys. Rev. A 97 013817 [44] Dai Z, Yang Z, Ling X, Zhang S, Pang Z, Li X and Wang Y 2017 Sci. Rep. 7 122 [45] Guo Q, Luo B, Yi F, Chi S and Xie Y 2004 Phys. Rev. E 69 016602 [46] Xu Z Y, Kartashov Y V and Torner L 2005 Opt. Lett. 30 3171 [47] Skupin S, Bang O, Edmundson D and Krolikowski W 2006 Phys. Rev. E 73 066603 [48] Zhong L H, Li Y Q, Chen Y, Hong W, Hu W and Guo Q 2017 Sci. Rep. 7 41438 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|