|
|
Motion of spiral tip driven by local forcing in excitable media |
Liu Gui-Quan (刘贵泉)a b, Ying He-Ping (应和平)a |
a Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China;
b College of Science, China Jiliang University, Hangzhou 310018, China |
|
|
Abstract We study the motion of a spiral wave controlled by a local periodic forcing imposed on a region around the spiral tip in an excitable medium. Three types of trajectories of spiral tip are observed: the epicycloid-like meandering, the resonant drift, and the hypocycloid-like meandering. The frequency of the spiral is sensitive to the local periodic forcing. The dependency of spiral frequency on the amplitude and size of local periodic forcing are presented. In addition, we show how the drift speed and direction are adjusted by the amplitude and phase of local periodic forcing, which is consistent with a theoretical analysis based on the weak deformation approximation.
|
Received: 10 October 2013
Revised: 25 November 2013
Accepted manuscript online:
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
82.40.Ck
|
(Pattern formation in reactions with diffusion, flow and heat transfer)
|
|
82.20.-w
|
(Chemical kinetics and dynamics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274271) and the Scientific Research Foundation of Education Bureau of Zhejiang Province, China (Grant No. Y201224250). |
Corresponding Authors:
Liu Gui-Quan, Ying He-Ping
E-mail: gqliu@zju.edu.cn;hpying@zju.edu.cn
|
About author: 05.45.-a; 05.45.Xt; 82.40.Ck; 82.20.-w |
Cite this article:
Liu Gui-Quan (刘贵泉), Ying He-Ping (应和平) Motion of spiral tip driven by local forcing in excitable media 2014 Chin. Phys. B 23 050502
|
[1] |
Meron E 1992 Phys. Rep. 218 1
|
[2] |
Lechleiter J, Girard S, Peralta E and Clapham D 1991 Science 252 123
|
[3] |
Davidenko J, Pertsov A, Salomonsz R, Baxter W and Jalife J 1992 Nature 355 349
|
[4] |
Plapp B B, Egolf D A, Bodenschatz E and Pesch W 1998 Phys. Rev. Lett. 81 5334
|
[5] |
Winfree T 1991 Chaos 1 303
|
[6] |
Steinbock O, Zykov V and Müller S C 1993 Nature 366 322
|
[7] |
Ouyang Q and Flesselles J M 1996 Nature 379 143
|
[8] |
Jahuke W and Winfree A T 1991 Int. J. Bifurc. Chaos 1 445
|
[9] |
Zykov V S, Steinbock O and Müller S C 1994 Chaos 4 509
|
[10] |
Guo H, Liao H M and Ouyang Q 2002 Phys. Rev. E 66 026104
|
[11] |
Zhan M, Wang X G, Gong X F and Lai C H 2005 Phys. Rev. E 71 036212
|
[12] |
Mantel R M and Barkley D 1996 Phys. Rev. E 54 4791
|
[13] |
Zhang H, Cao Z J, Wu N J, Ying H P and Hu G 2005 Phys. Rev. Lett. 94 188301
|
[14] |
Yuan G Y, Wang G R and Chen S G 2005 Europhys. Lett. 72 908
|
[15] |
Wu N J, Zhang H, Ying H P, Cao Z J and Hu G 2006 Phys. Rev. E 73 060901
|
[16] |
Zykov S, Zykov V and Davydov V 2006 Europhys. Lett. 73 335
|
[17] |
Yu L C, Ma J, Zhang G Y and Chen Y 2008 Chin. Phys. Lett. 25 2706
|
[18] |
Zykov V S, Bordiougov G, Brandtstädter H, Gerdes I and Engel H 2004 Phys. Rev. Lett. 92 018304
|
[19] |
Zhang H, Wu N J, Ying H P, Hu G and Hu B B 2004 J. Chem. Phys. 121 7276
|
[20] |
Liu G Q, Wu N J and Ying H P 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 2398
|
[21] |
Steinbock O, Schütze J and Müller S C 1992 Phys. Rev. Lett. 68 248
|
[22] |
Munuzuri A P, Gesteira M G and Munuzuri V P 1994 Phys. Rev. E 50 4258
|
[23] |
Chen J X and Hu B B 2008 Europhysics. Lett. 84 34002
|
[24] |
Lou Q, Chen J X, Zhao Y H, Shen F R, Fu Y, Wang L L and Liu Y 2012 Phys. Rev. E 85 026213
|
[25] |
Grill S, Zykov V S and Müller S C 1995 Phys. Rev. Lett. 75 3368
|
[26] |
Zykov V S, Mikhailov A S and Müller S C 1990 Phys. Rev. Lett. 78 3398
|
[27] |
Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196
|
[28] |
Yuan G Y, Xu A G, Wang G R and Chen S G 2010 Europhys. Lett. 90 10013
|
[29] |
Zhang G Y, Ma J, Yu L C and Chen Y 2008 Chin. Phys. B 17 4107
|
[30] |
Yuan G Y, Yang S P, Wang G R and Chen S G 2005 Acta Phys. Sin. 54 1510 (in Chinese)
|
[31] |
Zhang H J, Wang P Y and Zhao Y Y 2005 Chin. Phys. Lett. 22 287
|
[32] |
Deng B W, Zhang G Y and Chen Y 2008 Commun. Theor. Phys. 52 173
|
[33] |
Ma J, Wang C N, Jin W Y, Li Y L and Pu Z S 2008 Chin. Phys. B 17 2844
|
[34] |
Wu N J, Gao H J and Ying H P 2010 Phys. Rev. E 82 066206
|
[35] |
Markus M, Magy-Ungvaray Z and Hess B 1992 Science 257 225
|
[36] |
Xu L D, Qu Z L and Di Z R 2009 Phys. Rev. E 79 036212
|
[37] |
Xu L D, Li Z, Qu Z L and Di Z R 2012 Phys. Rev. E 85 046216
|
[38] |
Chen J X, Xu J R, Zhang X P, Zhang J W and Zhang X W 2009 Cent. Eur. J. Phys. 7 108
|
[39] |
Cao Z J, Li P F, Zhang H and Hu G 2007 Chaos 17 0151071
|
[40] |
Chen J X, Mao J W, He Y F, Hu B B, Xu J R and Yuan X P 2009 Phys. Rev. E 79 066209
|
[41] |
Zykov S, Zykov V S and Davydov V 2006 Europhys. Lett. 73 335
|
[42] |
Wu N J, Li B W and Ying H P 2006 Chin. Phys. Lett. 23 2030
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|