Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 104702    DOI: 10.1088/1674-1056/25/10/104702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Pattern formation in superdiffusion Oregonator model

Fan Feng(冯帆), Jia Yan(闫佳), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰)
Hebei Key Laboratory of Optic-electronic Information Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract  

Pattern formations in an Oregonator model with superdiffusion are studied in two-dimensional (2D) numerical simulations. Stability analyses are performed by applying Fourier and Laplace transforms to the space fractional reaction-diffusion systems. Antispiral, stable turing patterns, and travelling patterns are observed by changing the diffusion index of the activator. Analyses of Floquet multipliers show that the limit cycle solution loses stability at the wave number of the primitive vector of the travelling hexagonal pattern. We also observed a transition between antispiral and spiral by changing the diffusion index of the inhibitor.

Keywords:  pattern formation      reaction diffusion system      anomalous diffusion  
Received:  02 March 2016      Revised:  10 June 2016      Accepted manuscript online: 
PACS:  47.54.-r (Pattern selection; pattern formation)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Research Foundation of Education Bureau of Hebei Province, China (Grant Nos. Y2012009 and ZD2015025), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project.

Corresponding Authors:  Ya-Feng He     E-mail:  heyf@hbu.edu.cn

Cite this article: 

Fan Feng(冯帆), Jia Yan(闫佳), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰) Pattern formation in superdiffusion Oregonator model 2016 Chin. Phys. B 25 104702

[1] Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[2] Ouyang Q 2010 Introduction of nonlinear science and pattern dynamics (Beijing: Peking University Press) p. 7 (in Chinese)
[3] Mau Y, Hagberg A and Meron E 2009 Phys. Rev. E 80 065203
[4] Zhang X M, Fu M L, Xiao J H and Hu G 2006 Phys. Rev. E 74 015202
[5] Guo W Q, Qiao C, Zhang Z M, Ouyang Q and Wang H L 2010 Phys. Rev. E 81 056214
[6] Naknaimueang S, Allen M A and Müller S C 2006 Phys. Rev. E 74 066209
[7] Zhang H and Gao X 2014 Phys. Rev. E 89 062928
[8] Lou Q, Chen J X, Zhao Y H, Shen F R, Fu Y, Wang L L and Liu Y 2012 Phys. Rev. E 85 026213
[9] Ma J, Ying H P and Li Y L 2007 Chin. Phys. 16 955
[10] He Y F, Ai B Q and Liu F C 2013 Phys. Rev. E 87 052913
[11] Bánsági T Jr, Vanag V K and Epstein I R 2011 Science 331 1309
[12] Hernández D, Varea C and Barrio R A 2009 Phys. Rev. E 79 026109
[13] Nec Y, Nepomnyashchy A A and Golovin A A 2008 Europhys. Lett. 82 58003
[14] Zanette D H 1997 Phys. Rev. E 55 1181
[15] Langlands T A M, Henry B I and Wearne S L 2007 J. Phys.: Condens. Matter 19 065115
[16] Henry B I, Langlands T A M and Wearne S L 2005 Phys. Rev. E 72 026101
[17] Gong Y F and Christini D J 2003 Phys. Rev. Lett. 90 088302
[1] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[2] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[3] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[4] Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle
Jian Gao(高见), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2021, 30(7): 070501.
[5] Ergodicity recovery of random walk in heterogeneous disordered media
Liang Luo(罗亮), Ming Yi(易鸣). Chin. Phys. B, 2020, 29(5): 050503.
[6] Uphill anomalous transport in a deterministic system with speed-dependent friction coefficient
Wei Guo(郭伟), Lu-Chun Du(杜鲁春), Zhen-Zhen Liu(刘真真), Hai Yang(杨海), Dong-Cheng Mei(梅冬成). Chin. Phys. B, 2017, 26(1): 010502.
[7] Computational analysis of the roles of biochemical reactions in anomalous diffusion dynamics
Naruemon Rueangkham, Charin Modchang. Chin. Phys. B, 2016, 25(4): 048201.
[8] Numerical simulation and analysis of complex patterns in a two-layer coupled reaction diffusion system
Li Xin-Zheng (李新政), Bai Zhan-Guo (白占国), Li Yan (李燕), He Ya-Feng (贺亚峰), Zhao Kun (赵昆). Chin. Phys. B, 2015, 24(4): 048201.
[9] Sub-diffusive scaling with power-law trapping times
Luo Liang (罗亮), Tang Lei-Han (汤雷翰). Chin. Phys. B, 2014, 23(7): 070514.
[10] Control of the patterns by using time-delayed feedback near the codimension-three Turing–Hopf–Wave bifurcations
Wang Hui-Juan (王慧娟), Wang Yong-Jie (王永杰), Ren Zhi (任芝). Chin. Phys. B, 2013, 22(12): 120503.
[11] Controlling the transition between Turing and antispiral patterns by using time-delayed-feedback
He Ya-Feng(贺亚峰), Liu Fu-Cheng(刘富成), Fan Wei-Li(范伟丽), and Dong Li-Fang(董丽芳) . Chin. Phys. B, 2012, 21(3): 034701.
[12] Environment-dependent continuous time random walk
Lin Fang(林方) and Bao Jing-Dong(包景东). Chin. Phys. B, 2011, 20(4): 040502.
[13] Spatial pattern formation of a ratio-dependent predator–prey model
Lin Wang(林望). Chin. Phys. B, 2010, 19(9): 090206.
[14] Dendritic sidebranches of a binary system with enforced flow
Li Xiang-Ming(李向明) and Wang Zi-Dong(王自东). Chin. Phys. B, 2010, 19(12): 126401.
[15] Three-dimensional interfacial wave theory of dendritic growth: (I). multiple variables expansion solutions
Chen Yong-Qiang(陈永强), Tang Xiong-Xin(唐熊忻), and Xu Jian-Jun(徐鉴君). Chin. Phys. B, 2009, 18(2): 671-685.
No Suggested Reading articles found!