Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 110201    DOI: 10.1088/1674-1056/27/11/110201
Special Issue: SPECIAL TOPIC — 80th Anniversary of Northwestern Polytechnical University (NPU)
SPECIAL TOPIC—80th Anniversary of Northwestern Polytechnical University (NPU)   Next  

Heteroclinic cycles in a new class of four-dimensional discontinuous piecewise affine systems

Wenjing Xu(徐文静), Wei Xu(徐伟), Li Cai(蔡力)
School of Science, Northwestern Polytechnical University, Xi'an 710129, China
Abstract  

It is a huge challenge to give an existence theorem for heteroclinic cycles in the high-dimensional discontinuous piecewise systems (DPSs). This paper first provides a new class of four-dimensional (4D) two-zone discontinuous piecewise affine systems (DPASs), and then gives a useful criterion to ensure the existence of heteroclinic cycles in the systems by rigorous mathematical analysis. To illustrate the feasibility and efficiency of the theory, two numerical examples, exhibiting chaotic behaviors in a small neighborhood of heteroclinic cycles, are discussed.

Keywords:  heteroclinic cycle      chaos      discontinuous piecewise affine system  
Received:  20 June 2018      Revised:  05 September 2018      Accepted manuscript online: 
PACS:  02.60.-x (Numerical approximation and analysis)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11472212 and 11532011).

Corresponding Authors:  Wei Xu     E-mail:  weixu@nwpu.edu.cn

Cite this article: 

Wenjing Xu(徐文静), Wei Xu(徐伟), Li Cai(蔡力) Heteroclinic cycles in a new class of four-dimensional discontinuous piecewise affine systems 2018 Chin. Phys. B 27 110201

[1] Voorsluijs V and Decker Y D 2016 Phys. D 335 1
[2] Schiff S J, Jerger K, Duong D H, Chang T, Spano M L and Ditto W L1994 Nature 370 615
[3] Hou Y Y 2017 ISA Trans. 70 260
[4] Wang T C, He X and Huang T W 2016 Neurocomputing 190 95
[5] Fotsa R T and Woafo P 2016 Chaos Solit. Fract. 93 48
[6] Tacha O I, Volos C K, Kyprianidis I M, Stouboulos I N, VaidyanathanS and Pham V T 2016 Appl. Math. Comput. 26 95
[7] Zaher A A and Abdulnasser A R 2011 Commun. Nonlinear Sci. Numer. Simul. 16 3721
[8] Luo S H, Wu S L and Gao R Z 2015 Chaos 25 073102
[9] Sakai K, Upadhyaya S K, Sanchez P A and Sviridova N V 2017 Chaos 27 033115
[10] Yang J Q, Chen Y T and Zhu F L 2015 Neurocomputing 167 587
[11] Wang X, Akgul A, Cicek S, Pham V T and Hoang D V 2017 Int. J. Bifurcation and Chaos 27 1750130
[12] Zhang X D, Liu X D, Zhen Y and Liu C 2013 Chinese Physics B 22 030509
[13] Shi P M, Han D Y and Liu B 2010 Chinese Physics B 19 090306
[14] Lorenz E 1963 J. Atmos. Sci. 20 130
[15] Chua L and Ying R 1983 IEEE Trans. Circuits Syst. 30 125
[16] Chen G R and Ueta T 1999 Int. J. Bifurcation and Chaos 9 1465
[17] Lü J H and Chen G R 2002 Int. J. Bifurcation and Chaos 12 659
[18] Yang Q G, Chen G R and Zhou T S 2006 Int. J. Bifurcation and Chaos 16 2855
[19] Tigan G and Opriş D 2008 Chaos Solit. Fract. 36 1315
[20] Wei Z C and Yang Q G 2011 Nonlin. Anal.:Real World Appl. 12 106
[21] Yang Q G and Chen Y M 2014 Int. J. Bifurcation and Chaos 24 1450055
[22] Shil'nikov L P, Shil'nikov A, Turaev D and Chua L 1998 Methods of Qualitative Theory in Nonlinear Dynamics (Part I) (Singapore:WorldScientific)
[23] Shil'nikov L P, Shil'nikov A, Turaev D and Chua L 2001 Methods of Qualitative Theory in Nonlinear Dynamics (Part Ⅱ) (Singapore:WorldScientific)
[24] Carmona V, Fernández-Sáaacute F and Teruel N E 2008 Siam J. Appl. Dyn. Syst. 7 1032
[25] Li G and Chen X 2009 Commun. Nonlinear Sci. Numer. Simul. 14 194
[26] Bao J and Yang Q 2011 Appl. Math. Comput. 217 6526
[27] Leonov G A 2014 Nonlinear Dyn. 78 2751
[28] Han C, Yuan F and Wang X 2015 J. Eng. 2 615187
[29] Wu T T, Wang L and Yang X S 2016 Nonlinear Dyn. 84 817
[30] Wang L and Yang X S 2017 Nonlinear Anal. Hybrid Syst. 23 44
[31] Carmona V, Fernández-Sánchez F and García-Medina E 2017 Elsevier Science Inc. 296 33
[32] Chen Y L, Wang L and Yang X S 2018 Nonlinear Dyn. 91 67
[33] Yang Q G and Lu K 2018 Nonlinear Dyn. 93 2445
[34] Wu T T and Yang X S 2016 Chaos 26 053104
[35] Wu T T and Yang X S 2018 Nonlinear Anal. Hybrid Syst. 27 366
[36] Tresser C 1984 Inst. H. Poincaré Phys. Thoré 40 441
[37] Wiggins S and Mazel D S 1990 Computers in Phy. 4
[38] Wu T T, Li Q D and Yang X S 2016 Int. J. Bifurcation and Chaos 26 1650154
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[7] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[8] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!