Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060301    DOI: 10.1088/1674-1056/abd74e
GENERAL Prev   Next  

Entanglement properties of GHZ and W superposition state and its decayed states

Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余)
College of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
Abstract  We use the generalized Wootters formula, the positive partial transpose (PPT) criterion and the matched entanglement witness, to detect entanglement of three-qubit GHZ and W superposition state and its decayed states. It shows that the results of the generalized Wootters formula in the part near the W state are tight. In the other parts, the PPT criterion is superior to the generalized Wootters formula. Furthermore, we investigate the relationship between entanglement and coherence.
Keywords:  quantum entanglement      Wootters formula      matched entanglement witness      coherence  
Received:  26 September 2020      Revised:  23 November 2020      Accepted manuscript online:  30 December 2020
PACS:  03.65.Aa (Quantum systems with finite Hilbert space)  
  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61871347).
Corresponding Authors:  Xiao-Yu Chen     E-mail:  xychen@zjgsu.edu.cn

Cite this article: 

Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余) Entanglement properties of GHZ and W superposition state and its decayed states 2021 Chin. Phys. B 30 060301

[1] Chen X Y and Jiang L Z 2020 IEEE J. Sel. Areas Commun. 38 557
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Peres A 1996 Phys. Rev. Lett. 77 1413
[4] Gühne O and Tóth G 2009 Phys. Rep. 474 1
[5] Rudolph O 2004 Lett. Math. Phys. 70 57
[6] Chen K and Wu L A 2003 Quant. Inf. Comput. 3 193
[7] Horodecki P 1997 Phys. Lett. A 232 333
[8] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[9] Gühne O and Seevinck M 2010 New. J. Phys. 12 053002
[10] Chen X Y, Jiang L Z and Xu Z A 2018 Front. Phys. 13 130317
[11] Hu X M, Zhang C, Zhang C J, Liu B H, Huang Y F, Han Y J, Li C F and Guo G C 2019 Quantum Eng. 1 e13
[12] Li M, Wang J, Fei S M and Li-Jost X 2014 Phys. Rev. A 89 022325
[13] Liu L, Gao T and Yan F 2018 Chin. Phys. B 27 020306
[14] Chen X Y, Jiang L Z and Xu Z A 2017 Quant. Inf. Process. 16 95
[15] Chen X Y, Jiang L Z and Xu Z A 2019 Quant. Inf. Process. 18 262
[16] Sperling J and Vogel W 2013 Phys. Rev. Lett. 111 110503
[17] Chen X Y and Jiang L Z 2020 Phys. Rev. A 101 012308
[18] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[19] Liu F, Gao D M and Cai X Q 2019 Acta Phys. Sin. 68 230301 (in Chinese)
[20] Yang H, Qin L G, Tian L J and Ma H Y 2020 Chin. Phys. B 29 040303
[21] Tan K C, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A 84 012302
[22] Lee S Y, Ji S W, Kim H J and Nha H 2011 Phys. Rev. A 84 012302
[23] Chitambar E and Hsieh M H 2016 Phys. Rev. Lett. 117 020402
[24] Yang L W and Xia Y J 2017 Chin. Phys. B 26 080302
[25] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[26] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[27] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[28] Chen Z H, Ma Z H, Gühne O and Severini S 2012 Phys. Rev. Lett. 109 200503
[29] Størmer E 1963 Acta Math. 110 223
[30] Rana S, Parashar P, Winter A and Lewenstein M 2017 Phys. Rev. A 96 052336
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[5] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[6] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[7] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[8] Coherence migration in high-dimensional bipartite systems
Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(6): 060308.
[9] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[10] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[11] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[12] Effects of mesoscale eddies on the spatial coherence of a middle range sound field in deep water
Fei Gao(高飞), Fang-Hua Xu(徐芳华), and Zheng-Lin Li(李整林). Chin. Phys. B, 2022, 31(11): 114302.
[13] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[14] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[15] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
No Suggested Reading articles found!