|
|
Ultrafast structural dynamics using time-resolved x-ray diffraction driven by relativistic laser pulses |
Chang-Qing Zhu(朱常青)1,2, Jun-Hao Tan(谭军豪)1,2, Yu-Hang He(何雨航)1, Jin-Guang Wang(王进光)1, Yi-Fei Li(李毅飞)1, Xin Lu(鲁欣)1,2,3, Ying-Jun Li(李英骏)4,5, Jie Chen(陈洁)6, Li-Ming Chen(陈黎明)6,†, and Jie Zhang(张杰)1,6 |
1 Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China; 5 Department of Physics, College of Science, China University of Mining and Technology, Beijing 100083, China; 6 IFSA Collaborative Innovation Center and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract Based on a femtosecond laser plasma-induced hard x-ray source with a high laser pulse energy (>100 mJ) at 10 Hz repetition rate, we present a time-resolved x-ray diffraction system on an ultrafast time scale. The laser intensity is at relativistic regime (2×1019 W/cm2), which is essential for effectively generating Kα source in high-Z metal material. The produced copper Kα radiation yield reaches to 2.5×108 photons/sr/shot. The multilayer mirrors are optimized for monochromatizating and two-dimensional beam shaping of Kα emission. Our experiment exhibits its ability of monitoring the transient structural changes in a thin film SrCoO2.5 crystal. It is demonstrated that this facility is a powerful tool to perform dynamic studies on samples and adaptable to the specific needs for different particular applications with high flexibility.
|
Received: 01 April 2021
Revised: 24 May 2021
Accepted manuscript online: 16 June 2021
|
PACS:
|
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
|
67.80.de
|
(Structure, lattice dynamics and sound)
|
|
07.85.-m
|
(X- and γ-ray instruments)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0403301), Science Challenge Project (Grant No. TZ2018005), the National Natural Science Foundation of China (Grant Nos. 11991073, 11721404, 11805266, 11905289, and 61975229), and Key Program of Chinese Academy of Sciences (Grant Nos. XDA25030400 and XDB17030500). |
Corresponding Authors:
Li-Ming Chen
E-mail: lmchen@sjtu.edu.cn
|
Cite this article:
Chang-Qing Zhu(朱常青), Jun-Hao Tan(谭军豪), Yu-Hang He(何雨航), Jin-Guang Wang(王进光), Yi-Fei Li(李毅飞), Xin Lu(鲁欣), Ying-Jun Li(李英骏), Jie Chen(陈洁), Li-Ming Chen(陈黎明), and Jie Zhang(张杰) Ultrafast structural dynamics using time-resolved x-ray diffraction driven by relativistic laser pulses 2021 Chin. Phys. B 30 098701
|
[1] Yoshida M, Fujimoto Y, Hironaka Y, Nakamura K G, Kondo K, Ohtani M and Tsunemi H 1998 Appl. Phys. Lett. 73 2393 [2] Yu J, Jiang Z, Kieffer J C and Krol A 1999 Phys. Plasmas 6 1318 [3] Chen L M, Forget P, Fourmaux S, Kieffer J C, Krol A, Chamberlain C C, Hou B X, Nees J and Mourou G 2004 Phys. Plasmas 11 4439 [4] Krol A, Ikhlef A, Kieffer J C, Bassano D A, Chamberlain C C, Jiang Z, Pepin H and Prasad S C 1997 Med. Phys. 24 725 [5] Huang K, Li M H, Yan W C, Guo X, Li D Z, Chen Y P, Ma Y, Zhao J R, Li Y F, Zhang J and Chen L M 2014 Rev. Sci. Instrum. 85 113304 [6] Toth R, Kieffer J C, Fourmaux S, Ozaki T and Krol A 2005 Rev. Sci. Instrum. 76 083701 [7] Ráksi F, Wilson K R, Jiang Z, Ikhlef A, Côté C Y and Kieffer J C 1996 J. Chem. Phys. 104 6066 [8] Yoda O, Miyashita A, Murakami K, Aoki S and Yamaguchi N 1991 Excimer Lasers and Applications Ⅲ Proc SPIE 1503 463 [9] Miaja-Avila L, O'Neil G C, Uhlig J, Cromer C L, Dowel M L, Jimenez R, Hoover A S, Silverman K L and Ullom J N 2015 Struct. Dyn. 2 024301 [10] Nelson K A 1999 Science 286 1310 [11] Rischel C, Rousse A, Uschmann I, Albouy P A, Geindre J P, Audebert P, Gauthier J C, Förster E, Martin J L and Antonetti A 1997 Nature 390 490 [12] Rose-Petruck C, Jimenez R, Guo T, Cavalleri A, Siders C W, Raksi F, Squier J A, Walker B C, Wilson K R and Barty C P J 1999 Nature 398 310 [13] Siders C W, Cavalleri A, Sokolowski-Tinten K, Tóth C, Guo T, Kammler M, von Hoegen M H, Wilson K R, von der Linde D and Barty C P J 1999 Science 286 1340 [14] Rousse A, Rischel C and Gauthier J C 2001 Rev. Mod. Phys. 73 17 [15] Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Föster E, Geindre J P, Audebert P, Gauthier J C and Hulin D 2001 Nature 410 65 [16] Sokolowski-Tinten K, Blome C, Blums J, Cavalleri A, Dietrich C, Tarasevitch A, Uschmann I, Förster E, Kammler M, Horn-von-Hoegen M and von der Linde D 2003 Nature 422 287 [17] Bargheer M, Zhavoronkov N, Gritsai Y, Woo J C, Kim D S, Woerner M and Elsaesser T 2004 Science 306 1771 [18] Ihee H, Lorenc M, Kim T K, Kong Q Y, Cammarata M, Lee J H, Bratos S and Wulff M 2005 Science 309 1223 [19] Wall S, Yang S, Vidas L, Chollet M, Glownia J M, Kozina M, Katayama T, Henighan T, Jiang M, Miller T A, Reis D A, Boatner L A, Delaire O and Trigo M 2018 Science 362 572 [20] Schlegel T, Bastiani S, Gremillet L, Geindre J P, Audebert P, Gauthier J C, Lefebvre E, Bonnaud G and Delettrez J 1999 Phys. Rev. E 60 2209 [21] Chen L M, Kando M, Xu M H, Li Y T, Koga J, Chen M, Xu H, Yuan X H, Dong Q L, Sheng Z M, Bulanov S V, Kato Y, Zhang J and Tajima T 2008 Phys. Rev. Lett. 100 045004 [22] Zhang Z, Nishikino M, Nishimura H, Kawachi T, Pirozhkov A S, Sagisaka A, Orimo S, Ogura K, Yogo A, Okano Y, Ohshima S, Sunahara A, Fujioka S, Kiriyama H, Kondo K, Shimomura T and Kanazawa S 2011 Opt. Express 19 4560 [23] Azamoum Y, Tcheremiskine V, Clady R, Ferré A, Charmasson L, Utéza O and Sentis M 2018 Sci. Rep. 8 4119 [24] Kirkpatrick P and Baez A V 1948 J. Opt. Soc. Am. 38 766 [25] Schick D, Bojahr A, Herzog M, von Korff Schmising C, Shayduk R, Leitenberger W, Gaa P and Bargheer M 2012 Rev. Sci. Instrum. 83 025104 [26] Chen J, Chen W K and Rentzepis P M 2011 J. Appl. Phys. 109 113522 [27] Zamponi F, Ansari Z, Schmising C V, Rothhardt P, Zhavoronkov N, Woerner M, Elsaesser T, Bargheer M, Trobitzsch-Ryll T and Haschke M 2009 Appl. Phys. A 96 51 [28] Guo X, Jiang Z Y, Chen L, Chen L M, Xin J G, Rentzepis P M and Chen J 2015 Chin. Phys. B 24 108701 [29] Stuart B C, Feit M D, Rubenchik A M, Shore B W and Perry M D 1995 Phys. Rev. Lett. 74 2248 [30] Naseri N, Dupras G and Ramunno L 2020 Opt. Express 28 26977 [31] Martín L, Benlliure J, Cortina-Gil D, Peñas J and Ruiz C 2020 High Power Laser Sci. Eng. 8 e18 [32] Montel M 1957 The X-Ray Microscope with Catamegonic Roof-Shaped Objective (New York: Academic Press) pp. 177-185 [33] https://andor.oxinst.com/ [34] Chen L M, Lu X, Li D Z and Li Y F 2018 Chin. Phys. B 27 074101 [35] https://www.incoatec.de/ [36] Thomsen C, Grahn H T, Maris H J and Tauc J 1986 Phys. Rev. B 34 4129 [37] Zhu C Q, Yang M W, Wang X, Chen J, Jin K J, Chen L M and Zhang J To be published [38] Reich C, Gibbon P, Uschmann I and Förster E 2000 Phys. Rev. Lett. 84 4846 [39] Afshari M, Krumey P, Menn D, Nicoul M, Brinks F, Tarasevitch A and Sokolowski-Tinten K 2020 Struct. Dyn. 7 014301 [40] Zhu C Q, Wang J G and Chen L M (C.N. Patent) CN2020100304229 [Submitted date 2020-01-13] |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|